Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2020

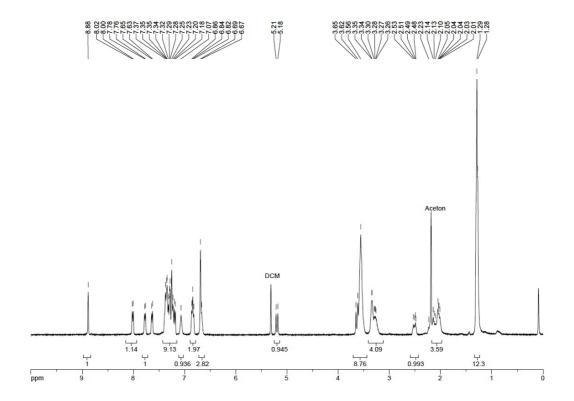
SUPPLEMENTARY INFORMATION

Tunable Functionalization of Nano-emulsions Using Amphiphilic Polymers

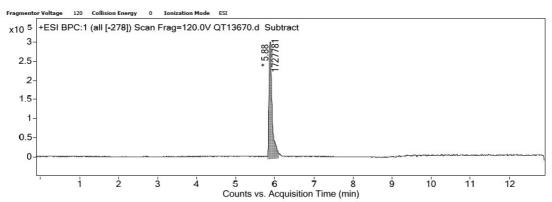
Asad Ur Rehman,^a Nicolas Anton,^{a,b,*} Sophie Bou,^c Jérémy Schild,^c Nadia Messaddeq,^d Thierry Vandamme,^{a,b} Salman Akram,^a Andrey Klymchenko,^c Mayeul Collot ^{c,*}

^a Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France

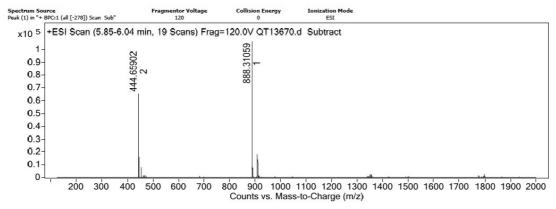
^b INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France

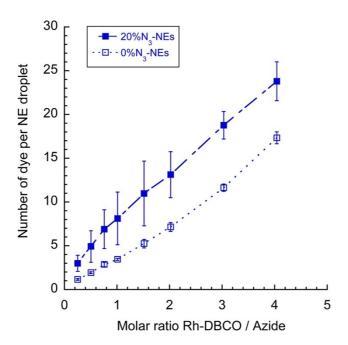

^c Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France

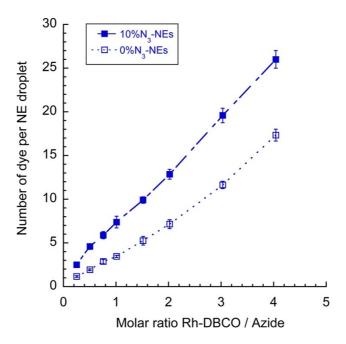
^d Université de Strasbourg, IGBMC, Inserm U1258, CNRS UMR7104, F-67000 Strasbourg, France


Synthesis of Rh-DBCO

Rh-DBCO. To a solution of sulforhodamine 1 (50 mg, 0.073 mmol) in DCM (2 mL) were added 2 mL of TFA. After 2h, the solvents were evaporated and the deprotected carboxylic acid was involved in the next step without any further purification. To a solution of


deprotected 1 (46 mg, 0.073 mmol) and DBCO-NH₂ (20 mg, 0.073 mmol, 1 eq) in DMF (5 mL) was added HATU (33 mg, 0.087 mmol, 1.2 eq) followed by DIEA (28 \Box L, 0.219 mmol, 3 eq). After 1 h00 the solvents were evaporated and the crude was first purified by column chromatography on silica gel (DCM/MeOH: 95/5 to 9/1) to obtain 59 mg g of **Rh-DBCO** (92% yield) as a dark violet syrup. Rf= 0.62 (DCM/MeOH: 9/1). ¹H-NMR (400 MHz, CDCl₃): δ 8.88 (s, 1H, H-Ar Rhod), 8.02-8.00 (m, 1H, H-Ar Rhod), 7.77 (br s, 1H, NH), 7.64 (d, J = 7.6 Hz, 1H, H-Ar Rhod), 7.37-7.18 (m, 8H, H-Ar DBCO + CDCl₃), 7.07 (s, 1H, H-Ar Rhod), 6.84 (t, J = 8.3 Hz, 2H, H-Ar Rhod), 6.69-6.66 (m, 3H, H-Ar Rhod), 5.20 (d, J = 13.4 Hz, 1H, PhN-CH DBCO), 3.65-3.53 (m, 9H, PhN-CH DBCO + NCH₂ Rhod), 3.34-3.24 (m, 4H, CH₂ and CH₂ DBCO), 2.54-2.48 (m, 1H, CH DBCO), 2.16-2.02 (m, 4H, CH₂), 1.29 (s, 12H, CH₃ Rhod). HRMS (ESI+), calcd for C₄₈H₅₀N₅O₈S₂ [M+H]⁺ 888.0670, found 888.3106.


¹H NMR spectrum of **Rh-DBCO**.


HPLC trace of **Rh-DBCO**. Conditions: column Zorbax SB-C18 50 mm x 2.1 mm, particles size = 1.8 μm. Temperature = 40°C. 0.5 mL/min, ACN (0.05% formic acid)/Water (0.05% formic acid): 2/98 to 100/0 in 8 min.

HRMS spectrum of **Rh-DBCO**.

Figure S1: Quantification of the total number of dye molecules (Rh-DBCO) which are attached to the NEs droplets. Comparison of the $20\%N_3$ -NEs and the control without azides, $0\%N_3$ -NEs.

Figure S2: Quantification of the total number of dye molecules (Rh-DBCO) which are attached to the NEs droplets. Comparison of the $10\%N_3$ -NEs and the control without azides, $0\%N_3$ -NEs.