Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2021

Selective Hydrogen Bonding Controls Temperature Response of Layer-by-Layer

Micellar Assemblies

Aliaksei Aliakseyeu,¹ Victoria Albright,¹ Danielle Yarbrough,¹ Samantha Hernandez,² Qing

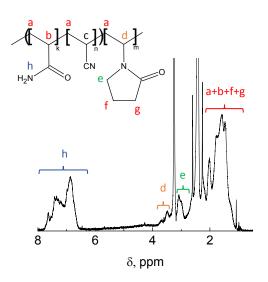
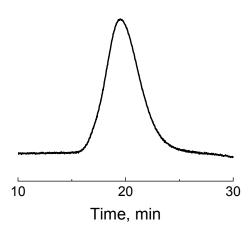
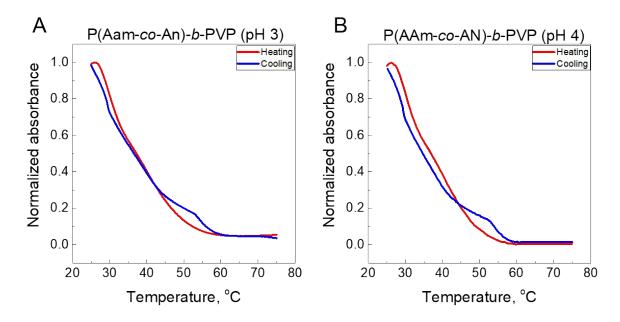
Zhou,¹ John F. Ankner,³ and Svetlana A. Sukhishvili^{1*}

¹Department of Materials Science & Engineering, Texas A&M University, College Station, TX

77843, USA

²College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA

³Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

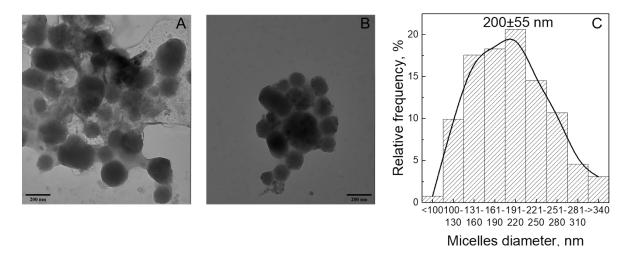

Figure S1. ¹H NMR of P(AAm-co-AN)-b-PVP in d₆-DMSO.

Figure S2. A GPC trace of 2 mg/ml P(AAm-*co*-AN)-*b*-PVP in DMSO. Flow rate of the eluent was 0.1 ml/min at 45 °C.

Figure S3. Temperature dependent turbidity in 1 mg/ml P(AAm-*co*-AN)-*b*-PVP solutions in PBS at pH 3 (A) and pH 4 (B).

Figure S4. TEM images of UCSTMs dried from solutions at pH 3 (A) and pH 4 (B), as well as the micellar size distribution (C) dried from pH 4 solution.

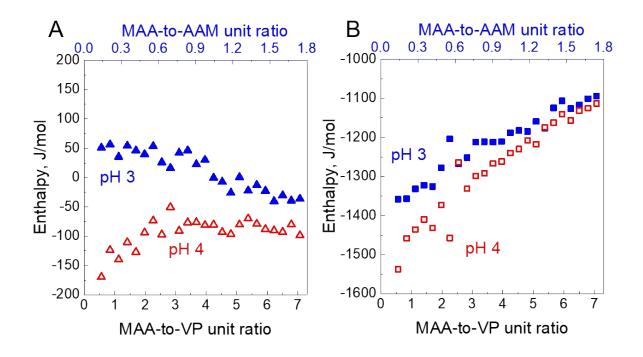
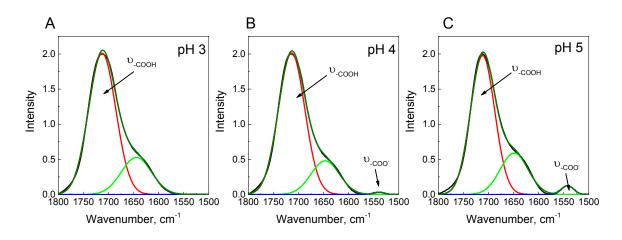
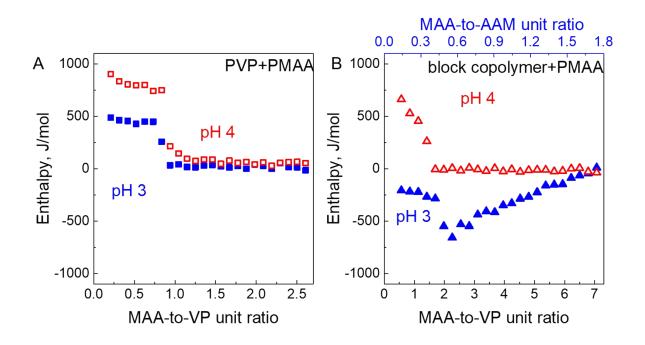
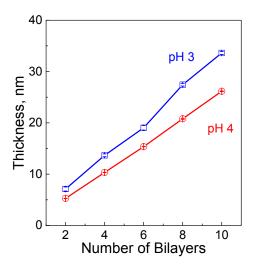
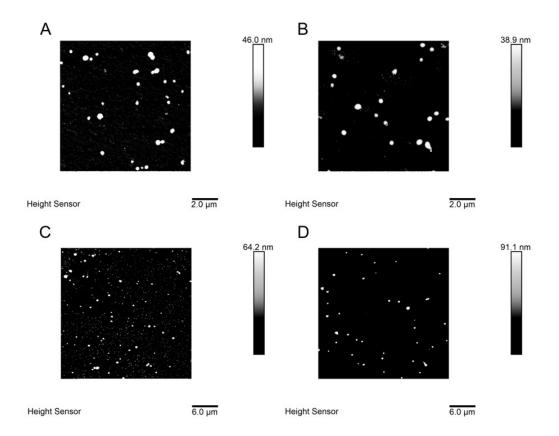





Figure S5. Enthalpy of dilution for PMAA to PBS at pH 3 and pH 4 at 25 °C (A) and 55 °C (B).


Figure S6. FTIR spectra of PMAA freeze-dried at pH 3 (A), pH 4 (B) and pH (5). Assuming that the extinction coefficients of stretching carbonyl vibrations of ionized and nonionized PMAA are equal, ionization of PMAA was determined as 0.6 ± 0.1 % at pH 4 and 3.8 ± 0.2 % at pH 5 from the ratio of 1540 cm⁻¹ to the sum of two 1540 and 1720 cm⁻¹ peaks in the 1500-1800 cm⁻¹ region.


Figure S7. ITC titration of PVP (A), and P(AAm-*co*-AN)-*b*-PVP (B) with PMAA at pH 3 (closed symbols) and pH 4 (open symbols) at 55 °C.

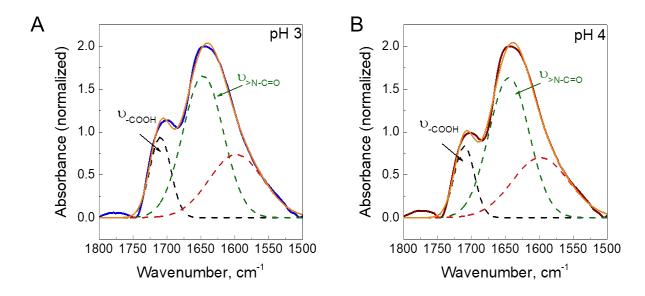

Figure S8. FTIR spectra of PMAA and UCSTM drop casted and dried on pre-cleaned silicon wafers, as well as UCSTMs/PMAA films deposited at pH 3.

Figure S9. Ellipsometric dry thickness of PVP/PMAA films deposited at pH 3 (open squares, blue) and pH 4 (open circles, red) at room temperature.

Figure S10. AFM images of monolayer of micelles deposited at pH 3 (A) and 4 (B) and 2 bilayer (UCSTM/PMAA) films deposited at pH 3 (C) and 4 (D) on silicon substrate. All substrates were primed with BPEI/PMAA layer prior to the micelles deposition.

Figure S11. Deconvolution of FTIR spectra of UCSTM/PMAA films deposited at pH 3 (A) and pH 4 (B) in the 1500-1800 cm⁻¹ region. The ratio of integrated intensities of stretching vibrations of PMAA (v_{-COOH}) to those of stretching vibrations of P(AAm-*co*-AN) block of UCSTMs ($v_{>N-C=O}$) is 0.3±0.01 and 0.25±0.01 at pH 3 and 4, respectively, suggesting a lower content of PMAA in films deposited at pH 4.

Fitting Model For Neutron Reflectometry Data:

Below is the model used for fitting the data obtained from neutron reflectometry experiments. The thicknesses of the three stacks are then:

$$d^{pure}_{H} = \sum_{l=0}^{7} d_{l}$$
$$d^{pure}_{D} = \sum_{l=8}^{9} d_{l}$$
$$d^{pure}_{H1} = \sum_{l=10}^{17} d_{l},$$

where the initial bilayer thickness d_l (or d_0) is a fitted parameter.

If the material deposited in sharply defined bilayers, the summation results in the total thickness of the film. The marker layer, d_D , yields information on how much the bilayers intermix with preceding and subsequently deposited material, so we can fit d_D as well and then we can get the thicknesses of the H-blocks, where in addition to d_0 and ϵ we now fit d_D .

$$d_{H} = \sum_{l=0}^{8} d_{l} - d_{D}/2,$$
$$d_{H1} = \sum_{l=9}^{17} d_{l} - d_{D}/2,$$

To breakdown the SLD data, the varying film density should be taken into account and can be represented as:

$$\Sigma = \rho \frac{N_A \sum_j b_j}{M} \equiv \rho S,$$

where ρ is the mass density, N_A Avogadro's number, $\sum_{j}^{j} b_j$ the sum of the scattering lengths in the formula unit (e.g. monomer), and M the atomic mass of the formula unit. In this way, we can separate the mass density from the stoichiometry S for each of the components of the film (PMAA, *d*PMAA, UCSTMs, and H₂O) and treat mass density as a fitted parameter.

The non-deuterated strata of the film follow the same hydration and mixing, except with PMAA rather than dPMAA,

$$\Sigma_{H} = \rho(f_{H20}S_{H20} + (1 - f_{H20})[f_{PMAA}S_{PMAA} + (1 - f_{PMAA})S_{UCSTM}])_{,}$$

where f_{H20} is the water volume fraction, f_{PMAA} the fraction of PMAA deposited per bilayer. The SLD of marker layer is the following:

$$\Sigma_{D}^{pure} = \rho(f_{H20}S_{H20} + (1 - f_{H20})[f_{PMAA}S_{dPMAA} + (1 - f_{PMAA})S_{UCSTM}])$$

$$f_{d} = d_{D}^{pure} / d_{D}$$
$$\Sigma_{D} = f_{d} \Sigma_{D}^{pure}$$

Parameters obtained from and used in the fit are presented in Table S1 and S2

Layer	<i>Nb</i> , (Å ⁻²)	<i>d</i> , (Å)	σ_{int} , (Å)	<i>d</i> _θ , (Å)	f _{PMAA}	<i>f</i> _{H20}	ρ, g/cm ³	f_d
(UCSTM/PMAA) ₈	1.07e-6	285.7	230.8	44.7 N/A	0.82 N/A	0.10	1.11	0.62
(UCSTM/dPMAA) ₂	2.52e-6	144.1	126.3					
(UCSTM/PMAA) ₈	1.07e-6	285.7	77.6					
BPEI	5.0e-7	27.3	27.3					
SiO2	3.23e-6	21.6	6.0			N/A	N/A	N/A
Si	2.05e-6	100.0	10.0					

Table S1. Model parameters for a $(UCSTM/PMAA)_8/(UCSTM/dPMAA)_2/(UCSTM/PMAA)_8$ film deposited from buffer solution at pH 3.0.

Table S2. Model parameters for a (UCSTM/PMAA)₈/(UCSTM/dPMAA)₂/(UCSTM/PMAA)₈ film deposited from buffer solution at pH 4.0.

Layer	<i>Nb</i> , (Å-2)	<i>d</i> , (Å)	σ_{int} , (Å)	<i>d</i> _ℓ , (Å)	f _{PMAA}	<i>f</i> _{H20}	ρ, g/cm ³	f_d
(UCSTM/PMAA) ₈	1.11e-6	207.0	173.5	24.2 N/A	0.65 N/A	0.09	1.10	0.69
(UCSTM/dPMAA) ₂	2.37e-6	70.7	62.9					
(UCSTM/PMAA) ₈	1.11e-6	207.0	44.5					
BPEI	4.95e-7	15.1	15.1					
SiO2	3.2e-6	24.3	10.0			N/A	N/A	N/A
Si	2.02e-6	100.0	5.0					