Supporting Information

Lignosulfonate functionalized g-C₃N₄/carbonized wood sponge for highly efficient

heavy metal ions scavenging

Yue Gu,^{a,b} Mengxiang Ye,^{a,b} Yongchuang Wang,^{a,b} Huaimeng Li,^{a,b} Haimin Zhang,^a Guozhong Wang,^a Yunxia Zhang^{*,a} and Huijun Zhao^{a,c}

^a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key

Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid

State Physics, Chinese Academy of Sciences, Hefei 230031, China.

^b University of Science and Technology of China, Hefei 230026, P. R. China

^c Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, Queensland 4222, Australia.

^{*} Correspondence Author. Email: <u>yxzhang@issp.ac.cn</u>

Fax: +86-551-65591434; Tel: +86-551-65592145

The K_d values are defined by the equation:

$$K_{d} = \frac{(C_{0} - C_{e})}{C_{e}} \times \frac{V}{m}$$

where $C_0 (mg/L)$ and $C_e (mg/L)$ are the initial and equilibrium concentrations of metal ions; V is the volume of the treated solution (mL); m is the weight of adsorbent (g). In generally, K_d values above 10⁴ are generally regarded as very good, while values above 10⁵ are exceptional.

Fig. S1 Photograph illustration of (a) natural balsa wood, (b) delignified balsa wood aerogel, (c) LS-C₃N₄/CWS. Graphical comparison from left to right of natural balsa wood, delignified balsa wood aerogel and g-C₃N₄/CWS: (d) cube with a size of 10 mm × 10 mm × 10 mm and (e) slice with a size of 10 mm × 10 mm × 1 mm. The size of these three materials are similar but colors change significantly: delignified balsa wood aerogel appears to be white and transparent; while LS-C₃N₄/CWS is black due to pyrolysis at 550 °C. According to statistics, the qualities of cube-shape natural balsa wood, delignified balsa wood aerogel and LS-C₃N₄/CWS are 0.1308 g, 0.0315 g and 0.0436 g, respectively; while the sliced natural balsa wood, delignified balsa wood aerogel and LS-C₃N₄/CWS are 0.0131 g, 0.0030 g and 0.0044 g, respectively.

Fig. S2 SEM images: (a) cross-section of natural balsa wood slice; (b) longitudinal section of natural balsa wood slice; (c) cross-section of delignified balsa wood aerogel; (d) longitudinal section of natural balsa wood slice.

Fig. S3 Chemical structure of a typical lignosulfonate (LS) segment (L= Lignin).

	Materials	Density (mg/cm ³)	Materials	Density (mg/cm ³)	
-	WS	29.8	g-C ₃ N ₄ /CWS	38.2	
	CWS	9.2	LS-CWS	10.2	
	LS-C ₃ N ₄ /CWS	49.3			

Table S1 The apparent densities of various samples.

	Elemental analysis/wt%					
samples	С	Н	Ν	0	S	
CWS	78.05	1.54	1.19	12.34	0.01	
g-C ₃ N ₄ /CWS	54.79	1.96	35.68	6.89	0.00	
LS-C ₃ N ₄ /CWS	64.11	2.15	9.09	21.71	1.15	

Table S2 Element composition of CWS, g-C₃N₄/CWS and LS-C₃N₄/CWS.

Fig. S4 Macropore size distribution curves of the obtained samples by mercury intrusion porosimetry.

Fig. S5 (a) Stress–strain curves of LS-C₃N₄/CWS under compression with maximum strains of 5%; (b) Stress–strain curves of WS and LS-C₃N₄/CWS under compression with maximum strains of 15%.

Models		Langmuir model	Freundlich model			
parameters	Q _{max} (mg/g)	K _L (L/mg)	R ²	K_{F} (mg/g)	1/n	R ²
Pb ²⁺	659.6	0.0792	0.9993	80.3	0.3786	0.9352
Cd^{2+}	329.1	0.0738	0.9992	72.7	0.2800	0.8872
Cu ²⁺	173.5	0.0361	0.9990	38.2	0.2741	0.8808

Table S3. Langmuir and Freundlich isotherm parameters for LS-C₃N₄/CWS toward Pb²⁺, Cd²⁺ and Cu²⁺.

Fig. S6 Pseudo-first-order model kinetic fitting curves of Pb²⁺, Cd²⁺ and Cu²⁺ on LS-C₃N₄/CWS adsorbent.

Fig. S7 SEM images with EDS mapping (a) and XRD patterns of LS- C_3N_4/CWS (b) after Pb²⁺, Cd²⁺ and Cu²⁺ sorption.

Fig. S8 S 2p spectra for LS-C₃N₄/CWS before and after adsorption of Pb²⁺, Cd²⁺ and Cu²⁺.