Long-Lifespan Lithium-Metal Batteries Obtained Using Perovskite Intercalation Layer to Stabilize Lithium Electrode

Nahid Kaisar^{1,3}, Anupriya Singh^{2,3}, Po-Yu Yang³, Yu-Ting Chen³, Shenghan Li³, Chun-Wei Pao³, Shankay Jou^{1,*}, Chih-Wei Chu^{3,*}

¹Department of Materials Science and Engineering, National Taiwan University of Science and

Technology, Taipei, Taiwan.

E-mail: <u>sjou@mail.ntust.edu.tw</u>

²Department of Physics, National Taiwan University, Taipei, Taiwan

³Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan

E-mail address: gchu@gate.sinica.edu.tw

*Corresponding authors

Keywords: Intercalation Chemistry, Perovskite, Lithium dendrite, Lithium anode, Li-S battery.

Fig. S1 Schematic representation of Spray-coating of CsPbI₃ using spray gun.

(c)

Fig. S2 a) Fully optimized structure of δ -CsPbI₃. b) DFT-predicted lattice parameters and unit cell volume of δ -CsPbI₃ determined in this present study, and compared with the previously reported experimental data. c) Experimentally measured and simulated of XRD patterns of δ -CsPbI₃.

Fig. S3 Photographs of transparent cells of a) pristine Li and b) δ -CsPbI₃-coated Li after overpotential measurements.

Fig. S4 Current vs time measurement of a) pristine δ -CsPbI₃ and b) Li:CsPbI₃ under white light.

Fig. S5 PL spectra of pristine CsPbI₃ and Li:CsPbI₃.

Fig. S6 (a) Stable structures of δ -CsPbI₃ featuring various ratios of intercalated Li atoms; the table lists the number of intercalated Li atoms located in tunnels A and B. (b) Experimentally measured and simulated of XRD patterns of Li-intercalated δ -CsPbI₃.

Fig. S7 Relative energy profile of Li diffusion pathways: a) in tunnel A, b) in tunnel B, and c) from tunnel A to B.

Fig. S8 Electrochemical performance of δ -CsPbI₃ in various electrolytes, recorded at a current density of 1 mA cm⁻² and a discharge capacity of 1 mA h cm⁻².

Fig. S9 Photographs of $CsPbI_3$ -coated Li samples prepared after dissolving $CsPbI_3$ (a) in DMF/DMSO and (b) DMF.

Fig. S10 Electrochemical performance of δ -CsPbI₃ at various loadings on Li substrates, recorded at a current density of 1 mA cm⁻² and a discharge capacity of 1 mA h cm⁻².

Fig. S11 Electrochemical performance of Li:CsPbI₃, recorded at various current densities.

Fig. S12 Cycling performance of a Li–S battery featuring pristine Li and a separator, recorded at a 1C rate ($1C = 175 \text{ mA h g}^{-1}$).