Electronic Supplementary Information

Rational Design of High Nitrogen-Doped and Core-Shell/Mesoporous Carbon Nanospheres with High Rate Capability and Cycling Longevity for Pseudocapacitive Sodium Storage

Jiayi Mao,^a Dechao Niu,^{*,a} Nan Jiang, ^a Guangyu Jiang,^a Meiwan Chen, ^a Yongsheng Li,^{*,a} and Jianlin Shi^{a,b}

^a Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Corresponding Email: dcniu@ecust.edu.cn, ysli@ecust.edu.cn

^b State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

This file includes:

Fig. S1 – 17

Table S1 – 3

References S1-7

Fig. S1 TEM images of spherical composite micelles at different magnifications.

Fig. S2 TEM images of the composite micelles with PDA obtained by different reaction time

periods: (a) 1 h, (b) 4 h, (c) 8 h, (d) 20 h.

Fig. S3 TEM images of the control group synthesized in almost the same way as HN-CSMCNs without the addition of CATB.

Fig. S4 TEM images of pure PS-*b*-PAA micelles.

Table S1 BET surface areas, pore volumes and pore size distributions of HN-CSMCNs, HN-HCNs

Samples	Specific surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Mesopore size (nm)	
HN-CSMCNs	449	0.60	14.8	
HN-HCNs	310	0.34	/	
N-CSMCNs	415	0.53	15.6	

and N-CSMCNs.

Fig. S5 Raman spectrum of HN-CSMCNs.

Fig. S6 (a-c) The galvanostatic discharge/charge curves of the HN-CSMCNs, HN-HCNs and N-

CSMCNs, (d) the cycling performances of N-CSMCNs and HN-HCNs at 5 A g^{-1} .

Sample	Carbon	Nitrogen	Oxygen	Pyridinic N	Pyrrolic N	Graphitic N	Oxidized N
	(wt%)	(wt%)	(wt%)	(%)	(%)	(%)	(%)
HN-CSMCNs	85.45	10.07	4.48	32.80	25.48	32.80	8.92
HN-HCNs	85.63	9.65	4.73	30.77	24.24	35.53	9.47
N-CSMCNs	88.57	6.43	5.00	22.26	16.96	49.35	11.43

 Table S2 Comparison of detailed XPS results for HN-CSMCNs, HN-HCNs and N-CSMCNs.

Fig. S7 Cycling performances of HN-CSMCNs, HN-HCNs and N-CSMCNs at 0.1 A g⁻¹.

Fig. S8 TEM images of (a, b) N-CSMCNs and (c, d) HN-HCNs.

Fig. S9 (a) Nitrogen adsorption/desorption isotherms, (b) BJH pore size distributions from absorption branches, (c) XRD patterns and (d) Raman spectra of N-CSMCNs and HN-HCNs.

Fig S10. (a) XPS survey spectrum, (b) C 1s, (c) N 1s, and (d) C 1s spectra of N-CSMCNs.

Fig. S11 (a) XPS survey spectrum, (b) C 1s, (c) N 1s, and (d) C 1s spectra of HN-HCNs.

Fig. S12 TEM images of (a) HN-CSMCNs-12 and (b) HN-CSMCNs-15.

Fig. S13 Cycling performances of HN-CSMCNs, HN-CSMCNs-12 and HN-CSMCNs-15 at 5 A g⁻¹.

Fig. S14 Log(*i*) *vs.* log(*v*) plots of the cathodic and anodic peaks for (a) HN-CSMCNs, (b) HN-HCNs and (c) N-CSMCNs.

Fig. S15 Pseudocapacitive contributions (the red-filled area) of HN-CSMCNs at varied scan rates: (a) 0.1 mV s^{-1} , (b) 0.2 mV s^{-1} , (c) 1.0 mV s^{-1} , (d) 2.0 mV s^{-1} .

Fig. S16 Nyquist plots of HN-CSMCNs before and after cycling for different cycles in different magnification.

Fig. S17 TEM images of HN-HCNs after cycling for 10000 cycles at 5 A g^{-1} .

Table S3 Comparison of the performances of various carbonaceous materials for SIBs anodes

reported recently.

Matorials	Specific	High-rate	Cueling norfermance		Def
	Capacity	Capability	Cycling performance	ICE	Kel.
			205 mAh/g after 1000		
			cycles at 0.5 A g ⁻¹		
HN-CSMCNs	251 mAh g ⁻¹	104 mAh g ⁻¹	163 mAh/g after 10000	27 20/	This work
	at 0.1 A g ⁻¹	at 15 A g ⁻¹	cycles at 5 A g ⁻¹	27.3%	This work
			140 mAh/g after 20000		
			cycles at 10 A g^{-1}		
Hierarchically	248 mAh g-1	101 mAh g ⁻¹	169 mAb g ⁻¹ after 270 cycles		
Porous, Active	240 mAng	2t 5 Λ σ ⁻¹	at 0.5 Å σ^{-1}	18.5%	[S1]
Carbon	at 0.1 A g	atung	at 0.3 A g		
Nanocarbon	280 mAh g ⁻¹	143 mAh g ⁻¹	296 mAh g ⁻¹ after 200 cycles	18 7%	[S2]
Network	at 0.1 A g ⁻¹	at 0.5 A g^{-1}	at 0.05 A g ⁻¹	48.270	
N-doped Carbon	270 mAh g ⁻¹	139 mAh g ⁻¹	160 mAh g⁻¹ after 9500	35 7%	[\$3]
Nanosheets	at 0.1 A g ⁻¹	at 5 A g^{-1}	cycles at 1A g ⁻¹	55.770	
N-doped Hard	247 mAh g ⁻¹	63 mAh g ⁻¹	174 mAh g ⁻¹ after 200cycles	20 /10/	[\$4]
Carbon Nanoshells	at 0.1 A g ⁻¹	at 5 A g ⁻¹	at 0.1 A g ⁻¹	50.4%	
N/S-doped Carbon	400 mAh g ⁻¹	92 mAh g ⁻¹	397 mAh g ⁻¹ after 1000	62 59/	[\$5]
Films	at 0.1 A g ⁻¹	at 2 A g ⁻¹	cycles at 0.1 A $g^{\scriptscriptstyle -1}$	03.376	
N-rich	250mAb g ⁻¹	150 mAb g ⁻¹	101.4 mAb σ^{-1} ofter 10000		
Hierarchically	25011A11 g -	150 MAIL g -	101.4 mAin g $-$ arter 10000	51.2%	[S6]
Porous Carbon	at 0.1 A g *	ai z A g -	cycles at 5 A g -		
3D Amorphous	240 mAh g ⁻¹	81 mAh g ⁻¹	188 mAh g ⁻¹ after 600 cycles		[[7]
Carbon	at 0.15 A g ⁻¹	at 4.8 A g ⁻¹	at 0.3 A g ⁻¹	/5%	[37]

References

- [S1] X. Deng, W. Shi, Y. Zhong, W. Zhou, M. Liu, Z. Shao, ACS Appl. Mater. Interfaces, 2018, 10, 21573–21581.
- [S2] H. Jia, N. Sun, M. Dirican, Y. Li, C. Chen, P. Zhu, C. Yan, J. Zang, J. Guo, J. Tao, ACS Appl. Mater. Interfaces, 2018, 10, 44368–44375.
- [S3] J. Qin, H.M.K. Sari, C. He, X. Li, J. Mater. Chem. A, 2019, 7, 3673–3681.
- [S4] S. Huang, Z. Li, B. Wang, J. Zhang, Z. Peng, R. Qi, J. Wang, Y. Zhao, Adv. Funct. Mater., 2018, 28, 1706294.
- [S5] J. Ruan, T. Yuan, Y. Pang, S. Luo, C. Peng, J. Yang, S. Zheng, *Carbon*, 2018, **126**, 9–16.
- [S6] X. Hu, X. Sun, S.J. Yoo, B. Evanko, F. Fan, S. Cai, C. Zheng, W. Hu, G.D. Stucky, Nano Energy, 2019, 56, 828–839.
- [S7] P. Lu, Y. Sun, H. Xiang, X. Liang, Y. Yu, Adv. Energy Mater., 2018, 8, 1702434.