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1. Experimental section 

1.1 materials 

Platinum(II) acetylacetonate (Pt(acac)2, AR), Bismuth nitrate 

pentahydrate (Bi(NO3)3
.
5H2O, AR), Copper(II) acetylacetonate 

(Cu(acac)2, AR), Polyvinylpyrrolidone (PVP-8000) were purchased from 

Sigma-Aldrich. NaI (AR), N,N-Dimethylformamide (DMF, 99.8%), 

absolute methanol/ethanol, KOH (AR), HClO4 (AR), dimethyl sulfoxide 

(DMSO, 99.5%) and Deuterium oxide (D2O, AR) were got from Aladdin. 

Pt black was obtained from Johnson Matthey.  

 

1.2 Measurement of electrocatalytic performance 

Cyclic voltammetry (CV) and i-t measurements were tested in a typical 
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three-electrode cell equiped with salt bridge and controlled by CHI 760E 

electrochemical workstation (CHI Instruments, Shanghai, Chenhua Co., 

Ltd.). The super pure water (18.25 MΩ cm) was used as solvent and 

purified through a Milli-Q Lab system (Nihon Millipore Ltd.). The glassy 

carbon (GC, Φ=5 mm) embedded into a Teflon holder was a working 

electrode. Prior to an electrochemical test, the GC electrode was 

mechanically polished using alumina powder (50 nm). It was then 

cleaned in an ultrasonic bath for 5 minutes. Then took a certain amount of 

catalysts to disperse with the volume ratio (1:1) of super pure water and 

ethanol under ultrasonic bath. The suspension of nanocrystals was spread 

on the GC electrode, and the metal loading amount of nanocrystals was 

controlled at geometric area of 10.2-12.7 μg Pt per cm
2
. When the 

electrode was dried under infrared lamp, 5.0 μl of Nafion diluents (0.1wt.% 

Nafion® solution) was coated onto the electrode surface. The Ag/AgCl 

electrode and platinum foil were used as the reference and counter 

electrode, respectively. The CVs were recorded in nitrogen-saturated 0.5 

M KOH solution or 0.5 M KOH + 1 M methanol solution and the 

potential was scanned from -0.8 to 0.2 V (vs. Ag/AgCl), and the scan rate 

was 50 mV·s
-1

. 

    The ECSAs were estimated by CO stripping: All samples were 

carried out by firstly in the N2-saturated 0.1 M HClO4 solution 

electrolytic cell to test from -0.25 to 0.9 V (vs. Ag/AgCl) at a scan rate of 



50 mV s
-1

, then inlet CO untill saturation and recorded the CVs. The 

ECSA was calculated by the following equation: 

ECSA = Q/(0.42 ×M), 

where Q (mC) is the charge for the CO adsorption. 0.42 (mC/cm
2
) is the 

electrical charge associated with full monolayer adsorption of CO on Pt. 

In situ anti-CO poisoning testing: The testing was carried out in 0.5 M 

KOH + 1 M CH3OH solution. Before performed CVs, CO gas was first 

inputted with a flow rate of 17.8 mL/min for 10 minutes, then kept CO 

inputting and CV scanning was performed. 

The d-band centers of the Pt69.2Bi29.6Cu1.2 nanoalloy and commercial Pt 

black were calculated from the following equation
[1-5]

 based on the 

valence band spectra. The d-band center positions of Pt of the 

Pt69.2Bi29.6Cu1.2 nanoalloy and commercial Pt black were respectively 

located at -4.37 eV and -3.77 eV, revealing that d-band center of Pt of the 

Pt69.2Bi29.6Cu1.2 nanoalloy downshifted compared with pure Pt black. 
[1-5]
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Table S1. A summary of the durability on electrocatalyst toward MOR. (All data 

obtained at room temperature; A. R. stands for activity retention.) 

 

 

Electrocatalyst Electrolyte Durability Reference 

Pt/Ni(OH)2/rGO 
1 M KOH + 1 M 

CH3OH 

90 % A. R. after 3,600 s 

40 % A. R. after 50,000 s 

[6]
Nat. Commun., 2015, 6, 

10035. 

Pt2Bi 
1M NaOH + 1 M 

CH3OH 
58.4 % A. R. after 10,000 s 

[7]
Nano Res., 2019, 12, 

429-436. 

Pt-Bi/GNs 
1 M KOH + 1 M 

CH3OH 
50.5 % A. R. after 2,000 s 

[8]
Electrochim. Acta, 2018, 

264, 53-60. 

PtAu/RGO/GC 
1 M KOH + 1 M 

CH3OH 
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[9]
J. Mater. Chem. A, 2013, 

1, 7255-7261. 
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0.5 M KOH + 2 M 
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[10]
J. Catal., 2012, 290, 

18-25. 

PtCu NFs 
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Adv. Mater., 2016, 28, 

8712-8717 

PtRu NWs 
0.1 M HClO4 + 0.5 M  

CH3OH 
29.9 % A. R. after 4,000 s 
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140, 1142-1147 

Pt7Ru2Fe NW 
0.1 M HClO4 + 0.5 M  
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0.1 M HClO4 + 0.2 M  

CH3OH 
55 % A. R. after 7,200 s 
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1173-1179 
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3D Pt3Co NWs 
0.5 M H2SO4 + 0.5 M 
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Pt/SiC 
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CH3OH 
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[19]
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PtCoNiRh 

NWs/C 

0.1 M HClO4 + 0.5 

M CH3OH 
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Nano Energy, 2020, 71, 

104623 

PtRu/PC–H 
0.1 M HClO4 + 0.5 

M CH3OH 
16.3 % A. R. after 7,200 s 

[21]
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Pt69.2Bi29.6Cu1.2 
0.5 M KOH + 1 M 

CH3OH 

161.4% A. R. after 3,600s 

202.7% A. R. after 36,000s 

166.4 % A. R.after108,000s 
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Note: In table S1, all initial currents were obtained at 30 s as the reference. 

Within 30s, because of the double-layer discharge of the electrodes and 
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Fig. S1 The overlaps of Pt, Bi and Cu. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2 TEM images (a) and XRD pattern (b) of the synthesized intermetallic Pt3Bi nanocrystals. 

(The atomic ratio of Pt:Bi analyzed by ICP-OES was 75:25, marked as Pt3Bi; The shape and size 

of intermetallic Pt3Bi nanocrystal is similar with that of Pt69.2Bi29.6Cu1.2 nanoalloy.) 

We can see that the XRD pattern of the synthesized Pt3Bi nanocrystal is 

consistent with the standard spectrum of intermetallic compound 

(PtBi-ICDS-58845), and when PtBi nanocrystal was synthesized, the 

intermetallic phase is usually formed.
 [7, 22-25]
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Fig. S3 CV curves of the Pt69.2Bi29.6Cu1.2 nanoalloy, intermetallic Pt3Bi nanocrystal and Pt black in 

0.5M KOH. The sweep rate was 50 mV s
-1

.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4 CVs of CO stripping. (a) Pt black, (b) intermetallic Pt3Bi nanocrystal and (c) 

Pt69.2Bi29.6Cu1.2 nanoalloy. 
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Fig. S5 Comparison of CVs of Pt black (a), intermetallic Pt3Bi nanocrystal (b) and Pt69.2Bi29.6Cu1.2 

nanoalloy (c) in 0.5 M KOH+1 M CH3OH before and after i-t test. 
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Fig. S6 The hydrogen spectrum (a) and carbon spectrum (b) of the solution after 30-hour test on 

Pt69.2Bi29.6Cu1.2 nanoalloy. 
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Fig. S7 In situ FTIR spectra between 2200 cm
-1

 and 1800 cm
 -1

 of commercial Pt black, 

intermetallic Pt3Bi nanocrystal and Pt69.2Bi29.6Cu1.2 nanoalloy in 0.5 M KOH + 1 M CH3OH 

solution at -0.7 V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S8 In situ FTIR spectra between 1700 cm
-1

 and 1200 cm
 -1

 of Pt69.2Bi29.6Cu1.2 nanoalloy (a), 

intermetallic Pt3Bi nanocrystal (b) and Pt black (c) in 0.5 M KOH + 1 M CH3OH solution. 

(a) 

(b) 

(c) 


