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1. Experimental section

1.1 materials

Platinum(ll)  acetylacetonate  (Pt(acac),, AR), Bismuth nitrate
pentahydrate  (Bi(NO3);5H,0, AR), Copper(ll) acetylacetonate
(Cu(acac),, AR), Polyvinylpyrrolidone (PVP-8000) were purchased from
Sigma-Aldrich. Nal (AR), N,N-Dimethylformamide (DMF, 99.8%),
absolute methanol/ethanol, KOH (AR), HCIO,4 (AR), dimethyl sulfoxide
(DMSO, 99.5%) and Deuterium oxide (D,0O, AR) were got from Aladdin.

Pt black was obtained from Johnson Matthey.

1.2 Measurement of electrocatalytic performance

Cyclic voltammetry (CV) and i-t measurements were tested in a typical
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three-electrode cell equiped with salt bridge and controlled by CHI 760E
electrochemical workstation (CHI Instruments, Shanghai, Chenhua Co.,
Ltd.). The super pure water (18.25 MQ cm) was used as solvent and
purified through a Milli-Q Lab system (Nihon Millipore Ltd.). The glassy
carbon (GC, ®=5 mm) embedded into a Teflon holder was a working
electrode. Prior to an electrochemical test, the GC electrode was
mechanically polished using alumina powder (50 nm). It was then
cleaned in an ultrasonic bath for 5 minutes. Then took a certain amount of
catalysts to disperse with the volume ratio (1:1) of super pure water and
ethanol under ultrasonic bath. The suspension of nanocrystals was spread
on the GC electrode, and the metal loading amount of nanocrystals was
controlled at geometric area of 10.2-12.7 pg Pt per cm® When the
electrode was dried under infrared lamp, 5.0 ul of Nafion diluents (0.1wt.%
Nafion® solution) was coated onto the electrode surface. The Ag/AgCl
electrode and platinum foil were used as the reference and counter
electrode, respectively. The CVs were recorded in nitrogen-saturated 0.5
M KOH solution or 0.5 M KOH + 1 M methanol solution and the
potential was scanned from -0.8 to 0.2 V (vs. Ag/AgCl), and the scan rate
was 50 mV s,

The ECSAs were estimated by CO stripping: All samples were
carried out by firstly in the N,-saturated 0.1 M HCIO, solution

electrolytic cell to test from -0.25 to 0.9 V (vs. Ag/AgCI) at a scan rate of



50 mV s*, then inlet CO untill saturation and recorded the CVs. The
ECSA was calculated by the following equation:

ECSA = Q/(0.42 M),
where Q (mC) is the charge for the CO adsorption. 0.42 (mC/cm?) is the
electrical charge associated with full monolayer adsorption of CO on Pt.

In situ anti-CO poisoning testing: The testing was carried out in 0.5 M
KOH + 1 M CH3OH solution. Before performed CVs, CO gas was first
inputted with a flow rate of 17.8 mL/min for 10 minutes, then kept CO
inputting and CV scanning was performed.

The d-band centers of the Ptgy,Bi,¢Cu;, nanoalloy and commercial Pt
black were calculated from the following equation'™ based on the
valence band spectra. The d-band center positions of Pt of the
Pteo oBiyg sCur, nNanoalloy and commercial Pt black were respectively
located at -4.37 eV and -3.77 eV, revealing that d-band center of Pt of the
Pteo.2Bize 6CU1 » Nanoalloy downshifted compared with pure Pt black. ™!
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Table S1. A summary of the durability on electrocatalyst toward MOR. (All data

obtained at room temperature; A. R. stands for activity retention.)

Electrocatalyst Electrolyte Durability Reference
_ IMKOH+1M 90 % A. R. after 3,600 s INat. Commun., 2015, 6,
Pt/Ni(OH),/rGO
CH3OH 40 % A. R. after 50,000 s 10035.
1M NaOH + 1 M "INano Res., 2019, 12,
i 0,
Pt,Bi CH.OH 58.4 % A. R. after 10,000 s 429-436,
_ IMKOH+1M BlElectrochim. Acta, 2018,
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CH;OH 264, 53-60.
IMKOH +1M ®lj. Mater. Chem. A, 2013,
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PtAu/RGO/GC CH.OH 20 % A. R. after 4,000 s 1, 7255-7261.
05MKOH +2 M ). Catal., 2012, 290,
' 0
PtysAg/C CH.OH 32.7 % A. R. after 3,600 s 18-25.
05MKOH +1 M HAdv. Mater., 2016, 28,
PtCu NFs CH.OH 38.8 % A. R. after 3,000 s 8712-8717
0.1 M HCIO, + 0.5 M 3. Am. Chem. Soc., 2018,
PtRu NWs ' ' 29.9 % A. R. after 4,000 s

CH;0H

140, 1142-1147

Pt;Ru,Fe NW

0.1MHCIO,+05M
CH;0H

116.3 % A. R. after 3,600 s

"SIEnergy Environ. Sci.,
2015, 8, 350-363

F628Ptggpd34 NWs
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(143, Am. Chem. Soc., 2011,
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CH3;0OH
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"®INano Res., 2019, 12,
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PtNi

0.5M H,S0O, + 0.5M
CH;0OH

43 % A. R. after 3,600 s

HIAdv. Funct. Mater., 2018,
28, 1704774

3D Pt;Co NWs
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CH3;0OH
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T Angew. Chem. Int. Ed.,
2015, 54, 3797-3801.

0.5M H,SO, + 0.5M

9ISmall, 2019, 15, 1902951
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CH5OH

[20]
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0.1 M HCIO, + 0.5 1 Appl. Catal. B-Environ.,
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05MKOH+1M
CH30H

161.4% A. R. after 3,600s
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166.4 % A. R.after108,000s
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Note: In table S1, all initial currents were obtained at 30 s as the reference.
Within 30s, because of the double-layer discharge of the electrodes and
the oxidation of adsorbed hydrogen, the current decreases rapidly. To
avoid this phenomenon and heavy fluctuation of the current, we chose the
current at 30s as the initial current for reference to calculate activity

retention.
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Fig. S1 The overlaps of Pt, Bi and Cu.
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Fig. S2 TEM images (a) and XRD pattern (b) of the synthesized intermetallic Pt3Bi nanocrystals.
(The atomic ratio of Pt:Bi analyzed by ICP-OES was 75:25, marked as Pt;Bi; The shape and size
of intermetallic Pt;Bi nanocrystal is similar with that of Ptgg ,Bi,g sCu; » nanoalloy.)

We can see that the XRD pattern of the synthesized Pt;Bi nanocrystal is
consistent with the standard spectrum of intermetallic compound

(PtBi-1ICDS-58845), and when PtBi nanocrystal was synthesized, the

intermetallic phase is usually formed. I"- %%
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Fig. S3 CV curves of the Ptgy ,Bi» sCuy » Nnanoalloy, intermetallic Pt;Bi nanocrystal and Pt black in
0.5M KOH. The sweep rate was 50 mV s™.
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Fig. S4 CVs of CO stripping. (a) Pt black, (b) intermetallic Pt;Bi nanocrystal and (c)
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Fig. S5 Comparison of CVs of Pt black (a), intermetallic Pt3Bi nanocrystal (b) and Ptgg 2Bisg sCuj 5
nanoalloy (c) in 0.5 M KOH+1 M CH30H before and after i-t test.
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Fig. S6 The hydrogen spectrum (a) and carbon spectrum (b) of the solution after 30-hour test on
Pteg_zBizg_chl_g nanoa”oy.
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Fig. S7 In situ FTIR spectra between 2200 cm™ and 1800 cm ™ of commercial Pt black,
intermetallic Pt;Bi nanocrystal and Ptge»BisgsCui» nanoalloy in 0.5 M KOH + 1 M CH;0H
solution at -0.7 V.
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Fig. S8 In situ FTIR spectra between 1700 cm™ and 1200 cm ™ of Ptgg ,Bisg sCU; - nanoalloy (a),
intermetallic Pt3Bi nanocrystal (b) and Pt black (c) in 0.5 M KOH + 1 M CH3OH solution.



