Electronic Supplementary Information

New strategy for engineering hierarchical porous carbon-anchored Fe single-atom electrocatalyst and the insights into its bifunctional catalysis for flexible rechargeable Zn-air battery

Cheng Du,^{*a,c*} Yijing Gao,^{*b*} Jianguo Wang,^{*b,**} and Wei Chen,^{*a, c**}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China

^b Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical

Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology,

Hangzhou 310032, P.R. China

^c University of Science and Technology of China, Hefei, Anhui 230029, P.R.China

* Corresponding author. E-mail: jgw@zjut.edu.cn; weichen@ciac.ac.cn

Fig. S1 (A-B) SEM images of ferric nitrate nanocrystals after the confined recyrstallization with a size of about 200 nm; (C-D) Optical microscope images of ferric nitrate salt with a size of few micrometers. Iron nitrate nonahydrate salt is easy to be decomposed under the electron beam during SEM measurement and clear image cannot be obtained; therefore optical microscope was used to characterize the size.

Fig. S2 (A-B) XRD patterns of Fe-NC SAC (A) and Fe-NC NP (B) before and after acid washing; (C) XRD patterns of Fe-NC NP samples prepared under different temperatures.

In the XRD pattern of Fe-NC SAC before acid washing (Figure S2A), two obvious sharp peaks of Fe at 44° and 65° (#06-0696) are observed. However, there are only two broad peaks at 26° and 42° of carbon (#41-1487) existing in the XRD spectrum of Fe-NC SAC after acid washing, indicating the successful removal of Fe NPs by acid washing. For the Fe-NC NP, a group peaks of Fe₃C (#65-2412) and a sharp peak at 27° belonging to Fe₃C (#03-0411) apparently appear in the XRD pattern of Fe-NC NP before acid washing. After acid washing, all of these diffraction peaks of Fe₃C are weakened but still exist in the XRD pattern. Such result suggests the presence of Fe₃C NPs in the final Fe-NC NP sample, agreeing well with the HRTEM results. What should be noted that, the peaks of carbon are broad due to its amorphousness while the Fe or Fe₃C are well crystallized with sharp diffraction peaks, which is an important basis to distinguish them in the overlaped signals.

Fig. S3 The fitting curve of Fe-NC SAC in k space.

Fig. S4 Nitrogen adsorption–desorption isotherms of Fe-NC samples prepared under different temperatures.

Fig. S5 (A) CV curves of Fe-NC SAC and Fe-NC NP in O₂-saturated 0.1 M KOH, scan rate: 20 mV s⁻¹; (B) RRDE LSV curves of ORR on the Fe-NC SAC, Fe-NC NP and Pt/C at 1600 rpm, scan rate: 5 mV s⁻¹; (C) H₂O₂% and n numbers calculated from the LSV curves in (B).

Fig. S6 (A-C) LSV curves of ORR on RRDE under 1600 rpm (A), Tafel curves (B), and calculated $H_2O_2\%$ and n numbers (C) on the Fe-NC-T samples, scan rate: 5 mV s⁻¹.

Fig. S7 TEM images of Fe-NC SAC after ADT of ORR (A-B) and OER (C-D).

Fig. S8 (A) LSV curves of OER on different samples under 1600 rpm with a scan rate of 5 mV s⁻¹. (B) Tafel plots of OER on the Fe-NC-T samples.

Sample	Shell	N^{a}	R (Å) b	$\sigma^2 (\text{\AA}^2 \cdot 10^3)^c$	$\Delta E0 (eV)^d$	R factor (%)
Fe-NC SAC	Fe-N	4.7	1.98	8.6	-1.1	1.1

^{*a*} *N*: coordination numbers; ^{*b*} *R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit.

Table. S2 The configurations and contents of different types of N in the Fe-NC SAC fromXPS data.

	Pyridinic N	Fe-Nx	pyrrolic N	graphitic N	oxidized N	Total
	(398.7eV)	(399.7eV)	(400.8 eV)	(402.3 eV)	(403.5eV)	N contant
Fe-NC SAC	39%	12%	27%	16%	6%	1.66%

	Fe-NC-700	Fe-NC-800	Fe-NC SAC	Fe-NC-1000	Fe-NC NP
S-total (cm^2g^{-1})	275	350	360	255	180
S-micro (cm^2g^{-1})	121	65	98	31	50
S-meso (cm^2g^{-1})	153	291	265	229	130
V-total (cm^3g^{-1})	0.25	0.3	0.39	0.38	0.27
V-micro (cm^3g^{-1})	0.06	0.04	0.05	0.01	0.03
V-meso (cm^3g^{-1})	0.19	0.26	0.34	0.37	0.24
Porosity	0.33	0.38	0.44	0.43	0.35
Micro-porosity	0.08	0.05	0.06	0.01	0.04
Meso-porosity	0.25	0.33	0.38	0.42	0.31

Table. S3 Pore structure data of the prepared samples obtained from the nitrogen isothermal adsorption/desorption measurements.

* The S represents the specific surface area; V represents the specific volume. The porosity was calculated based on the following equation:

$$Porosity = \frac{Pore \ volume}{Pore \ volume + Carbon \ volume};$$

Here, the intrinsic density of carbon is 1.99 g cm⁻³. (Chem. Eng. J. 2010, 160, 398.)

Catalyst	E _{1/2}	E ₁₀	E ₁₀ - E _{1/2}	Electrolyte	Ref
Fe-NC SAC	0.88	1.68	0.8	0.1M KOH	This work
Fe-NC NP	0.79	1.76	0.97	0.1M KOH	This work
Pt/C+RuO ₂	0.83	1.73	0.9	0.1M KOH	This work
Co-POC (SAC)	0.83	1.70	0.87	0.1M KOH	Adv. Mater. 2019, 1900592
Co-N _x -C (SAC)	0.79	1.74	0.95	0.1M KOH	Adv. Mater. 2017, 1703185
Co-N,B-CSs (SAC)	0.83	1.66	0.83	0.1M KOH	ACS Nano 2018, 12, 1894
FeN _x -PNC (SAC)	0.86	1.64	0.78	0.1M KOH	ACS Nano 2018, 12, 2, 1949-1958
NCNF-1000	0.82	1.84	1.02	0.1M KOH	Adv. Mater. 2016, 28, 3000
N-GCNT/FeCo-3	0.92	1.73	0.81	0.1M KOH	Adv. Energy Mater. 2017, 1602420
CuS/NiS ₂ INs	0.73	1.52	0.79	0.1M KOH	Adv. Funct. Mater. 2017, 1703779
(NCNT) arrays	0.81	1.65	0.84	0.1M KOH	Nano Energy 2017,37, 98-107
DN-CP@G	0.8	1.79	0.99	0.1M KOH	Adv. Energy Mater. 2018, 1703539
CoSx@PCN/rGO	0.78	1.57	0.79	0.1M KOH	Adv. Energy Mater. 2018, 8, 1701642
Ni-MnO/rGO	0.78	1.6	0.82	0.1M KOH	Adv. Mater. 2018, 30, 1704609
Pd@PdO-Co ₃ O ₄	0.73	1.54	0.81	0.1M KOH	Adv. Energy Mater. 2017, 1702734
Ni ₃ FeN	0.78	1.59	0.81	0.1M KOH	Nano Energy 2017,39, 77-85
MnCo ₂ O ₄	0.8	1.63	0.83	0.1M KOH	Angew. Chem. 2017, 129, 15173
Co ₃ FeS _{1.5} (OH) ₆	0.72	1.59	0.87	0.1M KOH	Adv. Mater. 2017, 1702327
Meso-CoNC@GF	0.87	1.66	0.79	0.1M KOH	Adv. Mater. 2017, 1704898
CoO _{0.87} S _{0.13} /GN	0.83	1.59	0.76	0.1M KOH	Adv. Mater. 2017, 1702526
Mo-N/C@MoS ₂	0.81	1.62	0.81	0.1M KOH	Adv. Funct. Mater. 2017, 1702300
CoZn-NC-700	0.84	1.62	0.78	0.1M KOH	Adv. Funct. Mater. 2017, 1700795
Ni ₃ Fe/N-C sheets	0.78	1.62	0.84	0.1M KOH	Adv. Energy Mater. 2017, 7, 1601172
NiCo/PFC aerogels	0.79	1.63	0.86	0.1M KOH	Nano Lett. 2016, 16, 6516-6522

Table. S4 Comparison of the electrocatalytic activities of the reported bifunctional catalysts and the materials prepared in this work for the ORR/OER

* $E_{1/2}$ refers to the half wave potential of ORR;

 E_{10} refers to the OER potential value at current density of 10 mA cm⁻².

	Before ADT	ORR ADT	OER ADT
1st test	1.55 wt%	1.4 wt%	1.5 wt%
2nd test	1.45 wt%	1.5 wt%	1.4 wt%

Table. S5 Fe content in the Fe-NC SAC after ADT from ICP-AES result.

The little difference should be ascribed to the instrumental error. Apparently, the content of

Fe almost have no loss after ADT, indicating the excellent stability of Fe SAC.