Electronic Supplementary Information

Power and carbon monoxide co-production by a proton-conducting solid oxide fuel cell with $La_{0.6}Sr_{0.2}Cr_{0.85}Ni_{0.15}O_{3-\delta}$ for on-cell dry reforming of CH₄ by CO₂

Tong Wei^{‡a}, Peng Qiu^{‡a, b}, Lichao Jia^{a*}, Yuan Tan^c, Xin Yang^b, Shichen Sun^b, Fanglin Chen^{b*} and Jian Li^a

a Center for Fuel Cell Innovation, School of Materials Science and Engineering, State Key Lab of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.

* *E-mail: jialc@hust.edu.cn*

b Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, United States.

**E-mail: chenfa@cec.sc.edu*

c School of Physics and Information Engineering, The Key Laboratory of Optoelectronic Chemical Materials and Devices, Jianghan University, Wuhan 430056, China.

‡ These authors contributed equally.

Fig. S1 Rietveld refinement for XRD patterns of (a) LSCrN and (b) reduced LSCrN.

Table S1 Structure parameters	for LSCrN and reduced I	LSCrN powders	obtained by the
Rietveld refinement.			

		Before reduction	After reduction	
		La _{0.6} Sr _{0.2} Cr _{0.85} Ni _{0.15} O ₃	$La_{0.683}Sr_{0.228}Cr_{0.968}Ni_{0.032}O_{3\text{-}\delta}$	Ni
Space group		<i>Pbnm</i> (62)	<i>Pbnm</i> (62)	Fm3m(225)
Unite-cell - parameters -	a (Å)	5.4633(9)	5.4737(7)	3.5300(7)
	<i>b</i> (Å)	7.7684(0)	7.7791(1)	3.5300(7)
	c (Å)	5.5063(8)	5.5123(9)	3.5300(7)
Reliability — factors —	R _p (%)	4.12	3.42	
	R _{wp} (%)	5.95	4.87	
	χ^2	2.57	3.12	

Fig. S2 Thermogravimetric analysis of LSCrN powder in 5% H₂-Ar up to and held at 800 °C.

Fig. S3 Microstructure of BZCYYb discs heat-treated in CO_2 at 700 °C for (a) 0 h, (b) 5 h, (c)10 h and 20 h (d), respectively.

Fig. S4 TEM examination of LSCrN reduced in H2 at 800 °C for 4 h: (a) Low magnification image; (b) High magnification image; (c) elemental mapping.

Fig. S5 Raman spectra taken at Ni-BZCYYb anode and LSCrN@Ni layer of H-DASC after stability test in CO_2 -CH₄ at 700 °C and 0.6 A cm⁻² for 65 h.