In-Situ Exsolution of Ag from AgBiS₂ Nanocrystals Anode

Boosting High-Performance Potassium-Ion Batteries

Xiaoru Ren‡, Dongxu Yu‡, Long Yuan, Yaocai Bai, Keke Huang Jinghai Liu, and Shouhua Feng*

Synthesis of Bi₂S₃ Nanorods

Typically, 1.0 mmol Bi(NO₃)₃ was loaded into a 100 mL three-neck flask fitted with a reflux condenser containing 1 mL OAm, 1 mL OA and 8mL ODE. The mixture was heated to 115 $^{\text{OC}}$ purifying alternatively in vacuum and argon atmosphere for three times to eliminate adventitious water and dissolved oxygen. Afterwards, the system was heated up to the transition temperature of 170 $^{\text{OC}}$ and followed by injection 3 mL N,N'-diphenylthiourea/diphenyl ether solution at the dissolving temperature of 145 $^{\text{OC}}$ via syringe with the color of the solution instantly turned black. The following step are the same as the synthesis process of AgBiS₂ NCs.

Figure S1. (a, b) XRD pattern and SEM image of $\mathrm{Bi}_2 S_3$ NCs.

Figure S2. (a, b) XPS spectra of Ag, Bi and S.

Figure S3. (a, b) The SEM image EDX spectrum of AgBiS₂ NCs.

Figure S4. (a) The 1st discharge profile of $AgBiS_2$ at a current density of 0.5 A g⁻¹ between 0.01 and 3 V. (b) The voltage profile against *in-situ* XRD patterns in the selected 2-theta regions.

Figure S5. (a) The 1st charge profile of $AgBiS_2$ at a current density of 0.5 A g⁻¹ between 0.01 and 3 V. (b) The voltage profile against *in-situ* XRD patterns in the selected 2-theta regions.

Figure S6. (a) The 2^{nd} discharge profile of AgBiS₂ at a current density of 0.5 A g⁻¹ between 0.01 and 3 V. (b) The voltage profile against *in-situ* XRD patterns in the selected 2-theta regions.

Figure S7. (a) The 2^{nd} charge profile of AgBiS₂ at a current density of 0.5 A g⁻¹ between 0.01 and 3 V. (b) The voltage profile against *in-situ* XRD patterns in the selected 2-theta regions.

Figure S8. Galvanostatic discharge-charge curves of $AgBiS_2$ nanorods at 0.5 A g⁻¹ using Al foil as current collector

Figure S9. (a) the XRD pattern of KBiS₂.

Figure S10 (a, b). HRTEM images of $AgBiS_2$ electrode after being discharged to 0.01 V and charged to 3.0 V.

Figure S11. Cycling performance of $AgBiS_2$ nano-octahedrons at 0.5 A g⁻¹.

Figure S12. (a) the GCD curves of the Bi_2S_3 ; (b) the cycling performance at the current rate of 0.5 A g^{-1} ; (c) the cycling performance at the current rate of 2 A g^{-1} ; (d) the rate performance of Bi_2S_3 at various current rates.

Figure S13. The EIS of different cycles (a) $AgBiS_2$; (b) Bi_2S_3 .

Figure S14. Galvanostatic discharge-charge curves of $AgBiS_2$ nanocubes at various current densities from 0.2 to 5 A g⁻¹.

Figure S15. N_2 adsorption-desorption isotherms of AC

Figure S16. XRD pattern of Activated Carbon (AC)

Figure S17. CV curves of AC at 0.1 mV/s

Figure S18. Charge-discharge profiles of AC at 0.05 A/g between 2.0 -4.0 V;

Figure S19. Cycling performance of AC at 0.05 A/g

Figure S20. Rate capacity of AC

Figure S21. Rate performance of $AC//AgBiS_2$ hybrid capacitor at various current densities

		-	
Active Material	Energy Density (Wh kg ⁻¹)	Power Density (W kg ⁻¹)	Year
(N, S)-3DHPC//AC	130.6	210	2020
CNSs//AC	149.0	210	2019
NCHS//WS2@NCNs	103.4	235	2019
Bi//K _{0.72} Fe[Fe(CN) ₆]	108.1	566	2018
K ₂ Ti ₆ O ₁₃ //NGC	58.2	~160	2018
Ca _{0.5} Ti ₂ (PO ₄) ₃ @C//AC	80	32	2018
K ₂ TP//AC	46	101	2018
AgBiS ₂ //AC	118.5	98.8	this work

Table S1. Comparison of energy density for various KIHCs