Controllable Synthesis of Layered K_{0.296}Mn_{0.926}O₂ to Assemble 2.4 V Aqueous Potassium-Ion Supercapacitors for Double High Device

Xijun Wei,^a Bin Zhang,^b Minhui Liao,^c Peng Xiao,^{*a} Xiaoyuan Zhou,^b Yunhuai Zhang,^a Jiangtao Liu^{*c}

^a College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

^b Analytical and Testing Center of Chongqing University, Chongqing 400044, China

^{c.} State Key Laboratory of Advanced Chemical Power Sources, Guizhou Meiling Power Sources Co. Ltd., Zunyi, Guizhou 563003, China

Notes

The authors declare no competing financial interest.

Figure captions

Figure.S1. (a) (b) SEM images of the MnO₂ and as-prepared $K_{0.296}Mn_{0.926}O_2$, respectively; (c) AFM image of the as-prepared $K_{0.296}Mn_{0.926}O_2$; (d) Obtained 3D image from the AFM image in Figure S1c.

Figure.S2. Powder XRD patterns of the commercial MnO₂.

Figure.S3. XPS spectra analysis for the K 2p (a) and O 1s (b) of as-prepared $K_{0.296}Mn_{0.926}O_2$, respectively.

Figure.S4. XPS spectra of MnO₂(a) and O 1s (b), respectively.

Figure.85. The EDX spectrum of $K_{0.296}Mn_{0.926}O_2$.

Figure.S6. (a) CV curves of commercial MnO_2 at the scan rate between 10 and 80 mV s⁻¹; (b) Galvanostatic charge-discharge curves of commercial MnO_2 at the current densities between 1 and 5 A g⁻¹.

Figure.S7. Density of states (DOS) of the MnO₂ and as-prepared K_{0.296}Mn_{0.926}O₂ using density functional theory (DFT)

Figure.S8. CV curves of MnO₂ and as-prepared $K_{0.296}Mn_{0.926}O_2$ at the scan rate between 1 and 9 mV s⁻¹, respectively.

Figure.S9. (a), (c) The contribution of the different energy storage mechanism of the MnO_2 and $K_{0.296}Mn_{0.926}O_2$ at 9 mV s⁻¹; (b), (d) Percentage of diffusion-controlled and surface-capacitance for the MnO_2 and $K_{0.296}Mn_{0.926}O_2$ at various scan rates, respectively.

Figure S10. (a), (b) The SEM images of MnO₂ after cycling; (c), (d) EDS-mapping of Figure S9(b).

Figure S11. (a), (b) The SEM images of $K_{0.296}Mn_{0.926}O_2$ after cycling.

Figure S12. The XRD spectrum of $K_{0.296}Mn_{0.926}O_2$ after cycling.

Figure.S13. CV curves of $MnO_2//AC$ at different potentials at a scan rate of 20 mV s⁻¹.

Figure.S14. (a) CV curves of $MnO_2//AC$ at the scan rate between 10 and 80 mV s⁻¹; (b) Galvanostatic charge-discharge curves of $MnO_2//AC$ at the current densities between 1 and 5 A g⁻¹.

Figure. S15. (a), (b) The computational models of bulk MnO_2 and $K_{0.296}Mn_{0.926}O_2$, respectively.

Table S1. The comparative table of morphology, specific surface areas and average pore diameters of our prepared products with previously

reported literature.

Figure.S1. (a) (b) SEM images of the MnO_2 and as-prepared $K_{0.296}Mn_{0.926}O_2$, respectively; (c) AFM image of the as-prepared $K_{0.296}Mn_{0.926}O_2$; (d) Obtained 3D image from the AFM image in Figure S1c.

Figure.S2. Powder XRD pattern of the commercial MnO₂.

Figure.S3. XPS spectra analysis for the K 2p (a) and O 1s (b) of as-prepared $K_{0.296}Mn_{0.926}O_2$, respectively.

Figure.S4. XPS spectra of MnO₂(a) and O 1s (b), respectively.

Figure.S5. The EDX spectrum of $K_{0.296}Mn_{0.926}O_2$.

Figure.S6. (a) CV curves of commercial MnO_2 at the scan rate between 10 and 80 mV s⁻¹; (b) Galvanostatic charge-discharge curves of commercial MnO_2 at the current densities between 1 and 5 A g⁻¹.

Figure.S7. Density of states (DOS) of the MnO_2 and as-prepared $K_{0.296}Mn_{0.926}O_2$ using density functional theory (DFT)

Figure.S8. (a), (b) CV curves of MnO_2 and as-prepared $K_{0.296}Mn_{0.926}O_2$ at the scan rate between 1 and 9 mV s⁻¹, respectively.

Figure.S9. (a), (c) The contribution of the different energy storage mechanism of the MnO_2 and $K_{0.296}Mn_{0.926}O_2$ at 9 mV s⁻¹; (b), (d) Percentage of diffusion-controlled and surface-capacitance for the MnO_2 and $K_{0.296}Mn_{0.926}O_2$ at various scan rates, respectively.

Figure S10. (a), (b) The SEM images of MnO₂ after cycling; (c), (d) EDS-mapping of Figure S9(b).

Figure S11. (a), (b) The SEM images of $K_{0.296}Mn_{0.926}O_2$ after cycling.

Figure S12. The XRD spectrum of $K_{0.296}Mn_{0.926}O_2$ after cycling.

Figure.S13. CV curves of MnO₂//AC at different potentials at a scan rate of 20 mV s⁻¹.

Figure.S14. (a) CV curves of $MnO_2//AC$ at the scan rate between 10 and 80 mV s⁻¹; (b) Galvanostatic charge-discharge curves of $MnO_2//AC$ at the current densities between 1 and 5 A g⁻¹.

Figure. S15. (a), (b) The computational models of bulk MnO_2 and $K_{0.296}Mn_{0.926}O_2$, respectively.

 Table S1. The comparative table of morphology, specific surface areas and average pore diameters of our prepared products with previously reported literature.

Samples	Morphology	Specific surface area (m ² g ⁻¹)	Average pore diameters (nm)	Device	Energy and power density	Reference
nanoporous carbon@K _{0.5} Mn ₂ O ₄	nanosheets	/	/	NCMO//NC	60 Wh kg ⁻¹ at 1200 W kg ⁻¹	[30]
ultrathin MnO ₂	nanosheets	/	/	MnO ₂ /carbo n fiber//graph ene/carbon fiber	27.2 Wh kg ⁻¹ at 979.7 W kg ⁻¹	[31]
MnO ₂ -CNT nanocomposite	nanoparticles	/	/	MnO ₂ - CNT//activa ted carbon	25 Wh kg ⁻¹ at 500 W kg ⁻¹	[32]
MnO ₂ /graphene nano- composites	nanoparticles	332	/	MnO ₂ /graph ene//graphe ne	35.2 Wh kg ⁻¹ at 7.4 kW kg ⁻¹	[33]
graphene/MnO ₂ composite	nanoparticles			graphene/M nO ₂ //activat ed carbon nanofibers	51.1 Wh kg ⁻¹ at 198 kW kg ⁻¹	[34]
graphene-MnO ₂	nanorods	43.8	2-5	graphene- MnO ₂ //dens ely stacked graphene	62.4 Wh kg ⁻¹ at 180 kW kg ⁻¹	[35]
K _{0.296} Mn _{0.926} O ₂	nanoparticles	52.4	3.7	K _{0.296} Mn _{0.92} ₆ O ₂ //AC	70 Wh kg ⁻¹ at 1200 kW kg ⁻¹	This work