Electronic Supplementary Information

A Simple PVA/Cu(OAc)₂ Thermogel with Inherent Near-Infrared Light Response and Its Applications in Smart Window and Photoresistor

Hao Zhang,^a Jie Hao,^b Xia Yu,^a Jianqiao Wu,^a Jiawei Li,^a Min-Hui Li,^c and Jun Hu^{*a}

^a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University

of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China.

^b Aerospace Research Institute of Special Material and Processing Technology, Yungang Beili,

Court No.10, Fengtai District, Beijing 100074, China

^c Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, 11 rue

Pierre et Marie Curie, Paris 75005, France.

*Corresponding Authors

Email: jhu@mail.buct.edu.cn (Jun Hu)

The supporting information includes 8 pages and 15 figures.

Contents

1.	Optical	photograph	s of	PVA/Cu(OAc) ₂	solution	upon	heating/coo	ling at	different
ter	nperature	es							Page S3
2.	Optical pł	notographs o	f PVA/C	Cu(OAc) ₂ solutio	on after 10	0 heatir	ng/cooling cy	cles	Page S3
3.	Optical pł	notographs o	f PVA/n	netal acetate so	olutions be	efore an	d after NIR ir	radiatio	nPage S4
4. (Optical pł	notographs o	f PVA/C	Cu(II) anion solu	itions befo	re and a	after NIR irrad	diation	Page S4
5.	Photothe	rmal effect fo	or PVA/	$Cu(OAc)_2$ and w	/ater upon	NIR lig	nt irradiation		Page S5
6. (Optical pł	notograph of	PVA/Cu	u(OAc)2 hydrog	el with ado	lition of	NaOH		Page S5
7. (Changes o	of solution st	ate upo	n heating at 80	юС				Page S5
8	TEM imag	ges of (a) PVA	and (b) Cu(OAc) ₂ afte	r heating a	it 80°C f	or 15 min		Page S6
9	Temperat	ture-depende	ent UV-v	vis spectra of P	VA/Cu(OAd	c) ₂ solut	ion		Page S6
10	. ¹ H NMR	spectra of P\	/A/Cu(C	DAc) ₂ solutions	as increasi	ng the I	molar ratio of	f Cu²+/hչ	/droxyl
••••									Page S6
11	. Tempera	ature-depend	lent ¹ H	NMR spectra o	f PVA solut	tion			Page S7
12.	Transmit	ttance variati	on of P'	VA/Cu(OAc) ₂ sc	olution as a	functio	on of tempera	ature	Page S7
13	. The fabr	ication proce	ess of P	/A/Cu(OAc) ₂ wi	ndow				Page S8
14	. Time-de	pendent top	surface	temperature o	hanges of	PVA/Cu	(OAc) ₂ windo)w	Page S8
15	. The sche	ematic illustra	ation ar	nd photograph	of the PVA	/Cu(OA	c) ₂ photoresis	stor	Page S8

Fig. S1 Optical photographs of $PVA/Cu(OAc)_2$ thermogel at 70, 80, 90 and 100°C, respectively, as well as its recover to solution after cooling to room temperature.

Fig. S2 Optical photographs of gel-sol transitions of PVA/Cu(OAc)₂ upon 100 heating/cooling cycles.

Fig. S3 Optical photographs of PVA/metal acetate (Cu²⁺, Li⁺, Na⁺, Mg²⁺, Mn²⁺, Co²⁺, Ni²⁺, Zn²⁺) solutions before and after irradiation of NIR light at 808 nm.

Fig. S4 Optical photographs of $PVA/Cu(OAc)_2$, $PVA/Cu(NO_3)_2$, $PVA/CuCl_2$, and $PVA/CuSO_4$ solutions before and after irradiation of NIR light at 808 nm.

Fig. S5 Photothermal effect of PVA/Cu(OAc)₂ solutions and water upon NIR light irradiation.

Fig. S6 Optical photograph of PVA/Cu(OAc)₂ hydrogel with addition of NaOH (concentration was

0.1 M) at 25°C.

Fig. S7 Optical photographs of (a) $Cu(OAc)_2$ and (b) $PVA/Cu(OAc)_2$ solution upon heating at 80°C

(concentration of PVA was 1.0%, and the molar ratio of hydroxyl group/Cu²⁺ was 20/3).

Fig. S8 TEM images of (a) PVA and (b) Cu(OAc)₂ solutions upon heating at 80°C for 15 min.

Fig. S9 Temperature-dependent UV-vis spectra of PVA/Cu(OAc)₂ solution (concentration of PVA

was 1.25%, and the molar ratio of hydroxyl group/Cu²⁺ was 20/3).

Fig. S10 ¹H NMR spectra (400 MHz, D₂O) of PVA/Cu(OAc)₂ solution as increasing the molar ratio of Cu²⁺/hydroxyl group from 0/20 to 7/20 at 25°C. * and Δ represent D₂O and DMSO-*d*₆, respectively.

Fig. S11 Temperature-dependent ¹H NMR spectra (400 MHz, D_2O) of PVA solution. * and Δ represent the ¹H NMR peak of D_2O and DMSO- d_6 .

Fig. S12 Transmittance variation of PVA/Cu(OAc)₂ solution as a function of temperature at 485

nm.

Fig. S13 The fabrication process and optical photograph of PVA/Cu(OAc)₂ window.

Fig. S14 Time-dependent top surface temperatures of $PVA/Cu(OAc)_2$ window. Inset is the IR

thermal image of PVA/Cu(OAc)_2 window under 1000 W m⁻² sunlight irradiation.

Fig. S15 (a) Schematic illustration and (b) photograph of the PVA/Cu(OAc)₂ photoresistor connected into a circuit.