Supporting Information

Dion–Jacobson-type oxide-ion conductor $CsLa_2Ti_2NbO_{10-\delta}$ without phase transitions

Wenrui Zhang, ab Kotaro Fujii, a Tomohiro Ishiyama, b Harue Kandabashi a and Masatomo Yashima a*

^a Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 W4–17 Ookayama, Meguro-ku, Tokyo 152–8551, Japan

^b Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan

Fig. S1 X-ray diffraction patterns of $C_{SR_2}Ti_2NbO_{10}$ (R = La, Pr, Nd, Sm, Gd, Ho and Yb). The black star marks in $C_{SR_2}Ti_2NbO_{10}$ (R = Gd, Ho and Yb) denote the X-ray diffraction peaks of $R_2Ti_2O_7$ (R = Gd, Ho and Yb). The red star marks stand for the unknown peaks.

Fig. S2 (a) Total energies of 49 kinds of models (all the possible arrangements of the Ti and Nb cations in the supercells $(CsLa_2Ti_2NbO_{10})_4$) using DFT-based calculations, (b) the most unstable model and (c) the most stable model of the 2 × 2 × 1 tetragonal supercells $(CsLa_2Ti_2NbO_{10})_4$.

We constructed $2 \times 2 \times 1$ tetragonal supercells (CsLa₂Ti₂NbO₁₀)₄ with different arrangements of the Ti and Nb cations. The Ti and Nb cations were allowed to exist in the inner perovskite layer and also in the outer perovskite layer (**Fig. S2**). **Fig. S2b** shows the most unstable model where all the Nb cations exist in the inner perovskite layer and all the Ti cations are located in the outer perovskite-like layers.

This model is inconsistent with the experimental results. **Fig. S2c** shows the most stable model where only Ti cations exist in the inner perovskite layer and Ti and Nb cations exist in the outer perovskite-like layer, which is consistent with the refined crystal structure with the inner perovskite layer $LaTi_{0.985}Nb_{0.015}O_3$ and the outer perovskite-like layer $La_{0.5}Ti_{0.508}Nb_{0.492}O_3$ (**Fig. 3**).

The different occupation of *B*-site cations (Ti and Nb) in CsLa₂Ti₂NbO₁₀ was explained using the electrostatic stabilization, in addition to the ionic radii and charge differences by Hong in 2000.^[1] They concluded that the insertion of a CsO layer with negative charge ([CsO]⁻¹) into a 3-dimensional perovskite structure contributes to the ordering of Ti⁴⁺ and Nb⁵⁺ cations along the *z*-axis by electrostatic stabilization. They imagined CsLa₂Ti₂NbO₁₀ as the composite of a [CsO] layer and a [La₂Ti₂NbO₉] layer. Then, the compound was depicted as a chain of [CsO]⁻¹–[La_{0.5}(Ti_{1-x}Nb_x)O₃]^{x-0.5}– [La(Ti_{2x}Nb_{1-2x})O₃]^{-2x+2}–[La_{0.5}(Ti_{1-x}Nb_x)O₃]^{x-0.5}–[CsO]⁻¹ depending on the distribution of *B*-site cations. They considered the *x* = 0.5 gives the charge distribution of [CsO]⁻¹–[La_{0.5}(Ti_{0.5}Nb_{0.5})O₃]⁰–[CsO]⁻¹ with the ideal charge separation, which means *B*-site cation arrangement in CsLa₂Ti₂NbO₁₀ was determined by the electrostatic stabilization.

References

1. Y.-S. Hong, S.-J. Kim, S.-J. Kim and J.-H. Choy, J. Mater. Chem., 2000, 10, 1209.

Fig. S3 Temperature dependencies of (a) the occupancy factors of oxygen atoms at the O*i* site g(Oi), (b) the atomic coordinate *x* of the oxygen atom at the O1 site, x(O1), (c) the atomic coordinate *z* of the oxygen atom at the O4 site, z(O4), and (d) the atomic coordinate *z* of the Ti_{0.5102}Nb_{0.4898} atom at the Ti/Nb2 site, z(Ti/Nb2), in CsLa₂Ti₂NbO_{10- δ}, which were refined using high-temperature neutron-diffraction data. The equatorial oxygen atom at the O4 site in the CsO layer has a higher oxygen vacancy concentration than the others and the oxygen vacancy concentration increases with an increase of temperature. The atomic coordinates of x(O1), z(O4) and z(Ti/Nb2) decrease with an increase of temperature.

Fig. S4 Thermal expansion coefficients (TECs) of $CsLa_2Ti_2NbO_{10-\delta}$. The TECs were estimated using the lattice parameters refined by the Rietveld analyses of the neutron diffraction data. TECs of $CsLa_2Ti_2NbO_{10-\delta}$ are defined as follows.

$$\begin{aligned} \alpha_{a}(\frac{(T_{i+1}) + (T_{i})}{2}) &= (a(T_{i+1}) - a(T_{i})) \times 2/(a(T_{i+1}) + a(T_{i})) / (T_{i+1} - T_{i}) \\ \alpha_{c}(\frac{(T_{i+1}) + (T_{i})}{2}) &= (c(T_{i+1}) - c(T_{i})) \times 2/(c(T_{i+1}) + c(T_{i})) / (T_{i+1} - T_{i}) \\ \alpha_{L}(\frac{(T_{i+1}) + (T_{i})}{2}) &= (v(T_{i+1}) - v(T_{i})) \times 2/(v(T_{i+1}) + v(T_{i})) / (T_{i+1} - T_{i}) \\ & \text{where } v(T_{i}) = [a(T_{i}) \cdot b(T_{i}) \cdot c(T_{i})]^{1/3} \end{aligned}$$

Here, the *i* is 1, 2 and 3; $T_1 = 473$ K, $T_2 = 673$ K, $T_3 = 873$ K and $T_4 = 1073$ K for CsLa₂Ti₂NbO_{10- δ}. The α_a , α_c and α_L increase with an increase of temperature.

Fig. S5 (a) Diffuse reflectance spectrum and (b) Tauc plot for the direct band gap of CsLa₂Ti₂NbO₁₀.

Fig. S6 Band structure of $CsLa_2Ti_2NbO_{10}$ based on DFT calculations using the most stable model in Fig. S2, which indicates the direct band gap at the Γ point. Lower E_g value (2.39 eV) in the DFT calculations compared with the experimental value (3.82 eV) is usual.

Fig. S7 Complex impedance plot recorded from 673 K to 1373K in following dry air.

Fig. S8 Oxide-ion transport number of $CsLa_2Ti_2NbO_{10-\delta}$ over the temperature range 873–1273 K measured by the oxygen concentration cell method.

Fig. S9 X-ray powder diffraction patterns of $CsLn_2Ti_2NbO_{10-\delta}$ before and after the electricalconductivity measurements at different oxygen partial pressures.

Fig. S10 La³⁺ displacement from the La-O2 layer due to electrostatic forces. (a) Hypothetical crystal structure of $CsLa_2Ti_2NbO_{9.916(8)}$ without cation and anion displacements. (b) Refined crystal structure of $CsLa_2Ti_2NbO_{9.916(8)}$, which was obtained using neutron-diffraction data at 1073 K.

The r_1 stands for the distance between La³⁺ and Ti/Nb1–O1 layer, while the r_2 denotes the distance between La³⁺ and Ti/Nb2–O3 layer. The interatomic distance r_2 is assumed to be r_1 . F_1 and F_2 in (a) are the electrostatic forces on the La³⁺ cations. To estimate the F_1 and F_2 , the Coulomb's forces between the La³⁺ cation and four layers of $k = \pm 2$ and ± 1 are considered. The calculated results show $F_1 > 0$ and $F_2 < 0$, indicating that the La³⁺ cations in CsLa₂Ti₂NbO_{9.916(8)} can be displaced apart from the Ti/Nb1-O1 layer due to the electrostatic forces.

Fig.S11 Oxygen contents *x* in CsLa₂Ti₂NbO_{*x*} and oxygen vacancy content δ in CsLa₂Ti₂NbO_{10- δ}, which were obtained through a thermogravimetric analysis and calculated using occupancy factors refined using the ND data.

Table S1. Lattice parameters *a*, *c* and volume *V* of $CsR_2Ti_2NbO_{10-\delta}$ (*R* = La, Pr, Nd and Sm) which were refined by the Rietveld analysis using the XRPD data.

Composition	a	С	V
CsLa ₂ Ti ₂ NbO _{10-δ}	3.84951(2) Å	15.3964(11) Å	228.1551(11)
CsPr ₂ Ti ₂ NbO _{10-δ}	3.83714(12) Å	15.3099(8) Å	225.4175(8)
CsNd ₂ Ti ₂ NbO _{10-δ}	3.83292(3) Å	15.2874(2) Å	224.5914(2)
CsSm ₂ Ti ₂ NbO _{10-δ}	3.8178(2) Å	15.2544(12) Å	222.3420(12)

Site a		Atom X,	Wyckoff		$\sigma(V; s)$	a	r		v		7		
Sites	Oxid	ation number	position		$g(\Lambda, S)$	u	x	,	y			Z	
Cs	Cs +1		1 <i>d</i>		1		1/2		1/2			1/2	
La		La +3	2 <i>h</i>		1		1/2		1/2			0.14035(4)	
	Ti	+ 4.02	1		0.9855(11)		0		0			0	
11/IND1	Nb	+ 4.02	1 <i>a</i>		0.0145(1	0.0145(11)		0		0		0	
T: AH 2	Ti	Ti 0.5072(5)		•		0							
11/1ND2	Nb	+ 4.49	2g		0.4928(0.4928(5))	0		0.28106(2)		
01		0 –2	4 <i>n</i>		0.5		0.109	99(2)	1/2			0	
02		0 –2	2g	1			()	0			0.12432(5)	
03		0 –2	4 <i>i</i>	1			(0		1/2		0.24963(4)	
04		0 –2	2g		0.977(2	2)	()		0		0.39421(6)	
Site <i>s</i>	Uiso	^b or $U_{\rm eq}{}^{c}$ (Å ²)	$U_{11}(\text{\AA}^2)^{d}$		$U_{22}(\text{\AA}^2)^d$	U_3	$\frac{1}{3}(\text{\AA}^2)^d \qquad U_{12}(\text{\AA}^2)^d$		\mathbf{A}^2) ^d $U_{13}(\mathbf{A}^2)^d$		d	$U_{23}(\text{\AA}^2)^d$	
Cs	Uec	$_{\rm q} = 0.0190(4)$	0.0083(5)	(0.0083(5)	0.04	403(12)	0		0		0	
La	Uiso	= 0.0043(14)	-		-		-	-		-		-	
Ti/Nb1	U _{iso}	= 0.0039(10)	-		-		-	-		-		-	
Ti/Nb2	$= U_{i}$ $= U_{is}$	iso(Ti; Ti/Nb1) so(Nb; Ti/Nb1)	-	-					-			-	
01	Uise	$_{0} = 0.0161(4)$	-		-		-	-		-		-	
02	Ueo	q = 0.0188(3)	0.0119(4)	(0.0119(4)	0.03	326(11)	0		0		0	
03	U _{iso}	= 0.0075(11)	-		-				-			-	
04	Uec	$_{1} = 0.0077(3)$	0.0088(5)	(0.0088(5)) 0.0055(6)		0		0		0	

Table S2. Crystallographic parameters of CsLa₂Ti₂NbO_{9.954(4)} which were refined using neutrondiffraction data at 473 K.

Crystal system: tetragonal; Space group: P4/mmm; Lattice parameters: a = b = 3.858267(6) Å and c = 15.43165(4) Å

Reliability factors: $R_{wp} = 3.23\%$, $R_p = 2.36\%$, $R_B = 3.24\%$ and $R_F = 3.32\%$.

^{*a*} g(X; s): Occupancy factor of X atom at the s site.

^{*b*} $U_{iso}(X; s)$: Isotropic atomic displacement parameter of X atom at the s site.

 c U_{eq} : Equivalent isotropic atomic displacement parameter.

^d U_{ij}: Anisotropic atomic displacement parameter.

^e The following linear constraints were used in the refinement: $U_{iso}(Ti; Ti/Nb1) = U_{iso}(Nb; Ti/Nb1) = U_{iso}(Ti; Ti/Nb2) = U_{iso}(Nb; Ti/Nb2).$

^f The occupancy factors of Cs, La, O1×2, O2, O3 and O4 were fixed to be 1 because the refined value was 1 within 3 times of the estimated deviation or higher than 1.

0.1		Atom X, Wyckoff									
Site s	Oxid	ation number	position	$g(X; s)^{u}$	x		-	V		Ζ	
Cs		Cs +1	1 <i>d</i>	1	1/2		1	/2	1/2		
La		La +3	2 <i>h</i>	1	1/2		1	1/2		.14020(4)	
	Ti	+ 4.02	1	0.9796(11)	0	0		0		0	
11/IND1	Nb	+ 4.02	1 <i>a</i>	0.0204(11)			0		U		
T:/NILO	Ti	+ 4.40	2-	0.5102(6)	0	- 0		0	0	0.00071(0)	
1 I/IND2	Nb	+ 4.49	2g	0.4898(6)	0			0		0.280/1(2)	
01		O –2	4 <i>n</i>	0.5	0.1056(2)	1	1/2		0	
02		O –2	2g	1	0		0		0.12407(5)		
03		O –2	4 <i>i</i>	1	0	0 1/2		/2 0.		.25005(4)	
04		O –2	2g	0.974(2)	0		0		0	.39403(7)	
Site <i>s</i>	U _{iso}	^{<i>b</i>} or $U_{eq}{}^{c}$ (Å ²)	$U_{11}(\text{\AA}^2)^{d}$	$U_{22}(\text{\AA}^2)^d$	$U_{33}(\text{\AA}^2)^d$	U_1	$_2(\text{\AA}^2)^d$	U_{13} (Å ²	<i>d</i>) <i>d</i>	$U_{23}(\text{\AA}^2)^d$	
Cs	Uec	= 0.0306(5)	0.0201(5)	0.0201(5)	0.0526(2)		0	0		0	
La	Ueq	= 0.0074(13)	0.0033(2)	0.0033(2)	0.0156(5)		0	0		0	
Ti/Nb1	Uise	$_{0} = 0.0040(2)$	-	-	-		-	-		-	
Ti/Nb2	$= U_{i}$ $= U_{is}$	_{iso} (Ti; Ti/Nb1) _{so} (Nb; Ti/Nb1)	-	-	-		-	-		-	
01	Uise	$_{0} = 0.0217(6)$	-	-	-		-	-		-	
02	Uec	= 0.0210(3)	0.0173(5)	0.0173(5)	.0285(13)		0	0		0	
03	Uec	= 0.0157(2)	0.0066(11)	0.0064(9)	0.0350(10)		0	0		0	
04	Uec	= 0.0160(8)	0.0180(5)	0.0180(5)	0.0122(8)		0	0		0	

Table S3. Crystallographic parameters of CsLa₂Ti₂NbO_{9.948(5)} which were refined using neutrondiffraction data at 673 K.

Crystal system: tetragonal; Space group: *P4/mmm*; Lattice parameters: a = b = 3.867334(5) Å and c = 15.46637(4) Å

Reliability factors: $R_{wp} = 2.93\%$, $R_p = 2.18\%$, $R_B = 3.87\%$ and $R_F = 3.86\%$.

^{*a*} g(X; s): Occupancy factor of X atom at the s site.

^b $U_{iso}(X; s)$: Isotropic atomic displacement parameter of X atom at the s site.

 c U_{eq} : Equivalent isotropic atomic displacement parameter.

^d U_{ij}: Anisotropic atomic displacement parameter.

^e The following linear constraints were used in the refinement: $U_{iso}(Ti; Ti/Nb1) = U_{iso}(Nb; Ti/Nb1) =$

 $U_{iso}(Ti; Ti/Nb2) = U_{iso}(Nb; Ti/Nb2).$

^f The occupancy factors of Cs, La, $O1 \times 2$, O2, O3 and O4 were fixed to be 1 because the refined value was 1 within 3 times of the estimated deviation or higher than 1.

0.1	Atom X,	Wyckoff		(\mathbf{V})						
Site s	Oxidation number	position	8	$g(X; s)^{u}$	x	У			Ζ	
Cs	Cs +1	1 <i>d</i>	1		1/2	1/2			1/2	
La	La +3	2 <i>h</i>	1		1/2	1/2		0.14063(5)		
	Ti 4.02	1 ~	0.9	9845(11)	0	0			0	
11/101	Nb + 4.02	14	0.	0155(11)	0	0		0		
T:/NIL2	Ti + 4.40	2~	0.50		0	0		0	2704(2)	
11/1N02	Nb + 4.49	2g	0.	.4923(6)	0	0		0.2794(2)		
01	O –2	4 <i>n</i>		0.5	0.10124(3)	1/2			0	
02	O –2	2g	1		0	0		0.12363(6)		
03	O –2	4 <i>i</i>		1	0	1/2		0.24996(4)		
04	O –2	2g	0	0.970(3)	0	0		0.39367(8)		
Site s	U^{b} or $U^{c}(\lambda^{2})$	$II (\lambda^2)$	$d = I_{I_{-1}}(\mathbf{\hat{\lambda}}^2) d$		$II (\lambda^2) d$	$U_{12}(Å^2)$	U_{13} ((Ų)	$U_{23}(Å^2)$	
	$O_{\rm iso}$ of $O_{\rm eq}$ (A)	011(A)			0 ₃₃ (A)	d	a	!	d	
Cs	$U_{\rm eq} = 0.0438(6)$	0.0286(7)	0.0286(7)	0.0744(2)	0	0)	0	
La	$U_{\rm eq} = 0.0129(2)$	0.0062(2)	0.0062(2)	0.0264(6)	0	0)	0	
Ti/Nb1	$U_{\rm iso} = 0.0059(6)$	-		-	-	-	-		-	
Ti/Nb2	$= U_{iso}(Ti; Ti/Nb1)$ $= U_{iso}(Nb; Ti/Nb1)$	-		-	-	-	-		-	
01	$U_{\rm iso} = 0.0274(5)$	-	-		-	-	-		-	
02	$U_{\rm eq} = 0.0290(3)$	0.0282(6)	0.0282(6)	0.0306(2)	0	0)	0	
03	$U_{\rm eq} = 0.0187(2)$	0.0154(4)	0.0043(5)	0.0364(11)	0	C)	0	
04	$U_{\rm eq} = 0.0262(4)$	0.0297(6)	0.0297(6)	0.0190(10)	0	0)	0	

Table S4. Crystallographic parameters of CsLa₂Ti₂NbO_{9.940(5)} which were refined using neutrondiffraction data at 873 K.

Crystal system: tetragonal; Space group: P4/mmm; Lattice parameters: a = b = 3.876526(5) Å and c =

15.50272(4) Å; Reliability factors: $R_{wp} = 2.81\%$, $R_p = 2.11\%$, $R_B = 4.36\%$ and $R_F = 4.20\%$.

^{*a*} g(X; s): Occupancy factor of *X* atom at the *s* site. ^{*b*} $U_{iso}(X; s)$: Isotropic atomic displacement parameter of *X* atom at the *s* site. ^{*c*} U_{eq} : Equivalent isotropic atomic displacement parameter.

^d U_{ij} : Anisotropic atomic displacement parameter. ^e The following linear constraints were used in the refinement: $U_{iso}(Ti; Ti/Nb1) = U_{iso}(Nb; Ti/Nb1) = U_{iso}(Ti; Ti/Nb2) = U_{iso}(Nb; Ti/Nb2)$.

^f The occupancy factors of Cs, La, O1×2, O2, O3 and O4 were fixed to be 1 because the refined value was 1 within 3 times of the estimated deviation or higher than 1.

Site <i>s</i>	Atom X	Oxidation number	Wyckof f position	g(X; s) ^a	x	у	Z	$U_{\rm iso}(X;s)^{b}$					
Cs	Cs	+1	1 <i>d</i>	1	1/2	1/2	1/2	0.02796(13)					
La	La	+3	2 <i>h</i>	1	1/2	1/2	0.141986(13)	0.00601(6)					
Ti/Nb	Ti	+ 4.0	+ 4.0	+ 4.0	1	1	0	0	0	0.0195(2)			
1	Nb			10	0	0	0	0	0.0185(3)				
Ti/Nb	Ti		. 4.5	1 4 5	1 4 5	1 4 5	1.4.5	2-	0.5	0	0	0.29052(2)	0.01952(14)
2	Nb	+ 4.5	2g	0.5	0	0	0.28053(3)	0.01852(14)					
01	0	-2	4 <i>n</i>	0.5	0.0938(7)	1/2	0	0.0127(7)					
02	0	-2	2g	1	0	0	0.12544(9)	$= U_{iso}(O; O1)$					
03	0	-2	4 <i>i</i>	1	0	1/2	0.22754(7)	$= U_{\rm iso}({\rm O};{\rm O1})$					
04	0	-2	2g	1	0	0	0.381972(11)	$= U_{iso}(O; O1)$					

Table S5. Crystallographic parameters of CsLa₂Ti₂NbO₁₀ which were refined using synchrotron X-ray powder diffraction data at 297 K.

Lattice parameters: a = b = 3.850752(3) Å and c = 15.401752(22) Å;

Reliability factors: $R_{wp} = 8.48\%$, $R_p = 5.15\%$, $R_B = 8.87\%$ and $R_F = 6.22\%$.

^{*a*} g(X; s): Occupancy factor of X atom at the s site.

^b $U_{iso}(X; s)$: Isotropic atomic displacement parameter of X atom at the s site.

^{*c*} The following linear constraints were used in the refinement: $U_{iso}(Ti; Ti/Nb1) = U_{iso}(Nb; Ti/Nb1);$ $U_{iso}(Ti; Ti/Nb2) = U_{iso}(Nb; Ti/Nb2); U_{iso}(O; O1) = U_{iso}(O; O2) = U_{iso}(O; O3) = U_{iso}(O; O4); g(O; O1) \times 0.5 = g(O; O2) = g(O; O3) = g(O; O4).$

Site <i>s</i>	Atom X	Oxidation number	Wyckof f position	g(X; s) ^a	x	у	Z	$U_{\rm iso}(X;s)^{b}$									
Cs	Cs	+1	1 <i>d</i>	1	1/2	1/2	1/2	0.04202(14)									
La	La	+3	2 <i>h</i>	1	1/2	1/2	0.141888(13)	0.01008(6)									
Ti/Nb	Ti	+ 4.0	+ 4.0	+ 4.0	+ 4.0	+ 4.0	1 ~	1	0	0	0	0.00826(2)					
1	Nb				10	0	0	0	0	0.00830(3)							
Ti/Nb	Ti	. 4.5	1.4.5	1 1 5	1 1 5	1 1 5	1 1 5	1 1 5	1 1 5	1 1 5	1 1 5	2~	0.5	0	0	0.28025(2)	0.02471(15)
2	Nb	+ 4.3	28	0.5	0	0	0.28023(3)	0.02471(15)									
01	Ο	-2	4 <i>n</i>	0.5	0.0821(6)	1/2	0	0.0238(2)									
02	0	-2	2g	1	0	0	0.12268(9)	$=\overline{U_{iso}(O;O1)}$									
03	0	-2	4 <i>i</i>	1	0	1/2	0.22759(6)	$= U_{iso}(O; O1)$									
04	0	-2	2g	1	0	0	0.384138(11)	$= U_{\rm iso}({\rm O};{\rm O1})$									

Table S6. Crystallographic parameters of $CsLa_2Ti_2NbO_{10}$ which were refined using synchrotron X-ray powder diffraction data at 473 K.

Lattice parameters: a = b = 3.857901(3) Å and c = 15.428681(26) Å;

Reliability factors: $R_{wp} = 7.69\%$, $R_p = 4.69\%$, $R_B = 9.02\%$ and $R_F = 6.28\%$.

^{*a*} g(X; s): Occupancy factor of X atom at the s site.

^b $U_{iso}(X; s)$: Isotropic atomic displacement parameter of X atom at the s site.

^{*c*} The following linear constraints were used in the refinement: $U_{iso}(Ti; Ti/Nb1) = U_{iso}(Nb; Ti/Nb1);$ $U_{iso}(Ti; Ti/Nb2) = U_{iso}(Nb; Ti/Nb2); U_{iso}(O; O1) = U_{iso}(O; O2) = U_{iso}(O; O3) = U_{iso}(O; O4); g(O; O1) \times 0.5 = g(O; O2) = g(O; O3) = g(O; O4).$

Site s	Atom X	Oxidation number	Wyckof f position	$g(X;s)^{a}$	x	у	Z	$U_{\rm iso}(X;s)^{b}$			
Cs	Cs	+1	1 <i>d</i>	1	1/2	1/2	1/2	0.05782(15)			
La	La	+3	2 <i>h</i>	1	1/2	1/2	0.142156(14)	0.01596(6)			
Ti/N	Ti	- 1.0	+ 4.0	+ 4.0	+ 4.0	1 ~	1	0	0	0	0.0162(2)
b1	Nb	+ 4.0	10	0	0	0		0.0102(5)			
Ti/N	Ti	. 4.5	1 4 5	2-	0.5	0	0	0.0707((2)	0.02082(1()		
b2	Nb	+ 4.5	28	0.5	0	0	0.27976(3)	0.02983(16)			
01	0	-2	4 <i>n</i>	0.5	0.0752(7)	1/2	0	0.0354(3)			
02	0	-2	2g	1	0	0	0.12345(9)	$= U_{\rm iso}({\rm O};{\rm O1})$			
03	0	-2	4 <i>i</i>	1	0	1/2	0.22614(6)	$= U_{\rm iso}({\rm O};{\rm O1})$			
04	0	-2	2g	1	0	0	0.381114(12)	$= U_{iso}(O; O1)$			

Table S7. Crystallographic parameters of $CsLa_2Ti_2NbO_{10}$ which were refined using synchrotron X-ray powder diffraction data at 673 K.

Lattice parameters: a = b = 3.867959(4) Å and c = 15.5465635(27) Å;

Reliability factors: $R_{wp} = 7.50\%$, $R_p = 4.55\%$, $R_B = 9.38\%$ and $R_F = 6.69\%$.

^{*a*} g(X; s): Occupancy factor of X atom at the s site.

^b $U_{iso}(X; s)$: Isotropic atomic displacement parameter of X atom at the s site.

^c The following linear constraints were used in the refinement: $U_{iso}(Ti; Ti/Nb1) = U_{iso}(Nb; Ti/Nb1)$; $U_{iso}(Ti; Ti/Nb2) = U_{iso}(Nb; Ti/Nb2)$; $U_{iso}(O; O1) = U_{iso}(O; O2) = U_{iso}(O; O3) = U_{iso}(O; O4)$; g(O; O1) $\times 0.5 = g(O; O2) = g(O; O3) = g(O; O4)$.

Site <i>s</i>	Atom X	Oxidation number	Wyckof f position	g(X; s) ^a	x	у	Z	$U_{\rm iso}(X;s)^{b}$		
Cs	Cs	+1	1 <i>d</i>	1	1/2	1/2	1/2	0.07944(17)		
La	La	+3	2 <i>h</i>	1	1/2	1/2	0.141998(14)	0.02443(6)		
Ti/Nb	Ti	- 4.0	1 -	1	0	0	0	0.0190(2)		
1	Nb	+ 4.0	10	0	0			0.0180(3)		
Ti/Nb	Ti		. 4.5	1 1 5	2.5	0.5	0	0	0.07040(2)	0.02765(17)
2	Nb	+ 4.5	2g	0.5	0		0.27949(3)	0.03/65(17)		
01	0	-2	4 <i>n</i>	0.5	0.0643(8)	1/2	0	0.0425(3)		
02	0	-2	2g	1	0	0	0.12248(9)	$= U_{\rm iso}({\rm O};{\rm O1})$		
03	0	-2	4 <i>i</i>	1	0	1/2	0.22676(7)	$= U_{\rm iso}({\rm O};{\rm O1})$		
04	0	-2	2g	1	0	0	0.38925(12)	$= U_{\rm iso}({\rm O};{\rm O1})$		

Table S8. Crystallographic parameters of $CsLa_2Ti_2NbO_{10}$ which were refined using synchrotron X-ray powder diffraction data at 873 K.

Lattice parameters: a = b = 3.876614(4) Å and c = 15.501699(26) Å;

Reliability factors: $R_{wp} = 7.51\%$, $R_p=4.74\%$, $R_B = 10.29\%$ and $R_F = 8.10\%$.

^{*a*} g(X; s): Occupancy factor of X atom at the s site.

^b $U_{iso}(X; s)$: Isotropic atomic displacement parameter of X atom at the s site.

^{*c*} The following linear constraints were used in the refinement: $U_{iso}(Ti; Ti/Nb1) = U_{iso}(Nb; Ti/Nb1);$ $U_{iso}(Ti; Ti/Nb2) = U_{iso}(Nb; Ti/Nb2); U_{iso}(O; O1) = U_{iso}(O; O2) = U_{iso}(O; O3) = U_{iso}(O; O4); g(O; O1) \times 0.5 = g(O; O2) = g(O; O3) = g(O; O4).$

Site <i>s</i>	Atom X	Oxidation number	Wyckof f position	g(X; s) ^a	x	у	Z	$U_{\rm iso}(X;s)^{b}$		
Cs	Cs	+1	1 <i>d</i>	1	1/2	1/2	1/2	0.09446(19)		
La	La	+3	2 <i>h</i>	1	1/2	1/2	0.142078(15)	0.02741(6)		
Ti/Nb	Ti	- 4.0	1 -	1	0	0	0	0.0222(2)		
1	Nb	+ 4.0	10	0	0	0		0.0222(3)		
Ti/Nb	Ti		. 4.5	1 1 5	2.5	0.5	0	0	0.07004(2)	0.04242(10)
2	Nb	+ 4.5	2g	0.5	0	0	0.27904(3)	0.04343(18)		
01	0	-2	4 <i>n</i>	0.5	0.0549(9)	1/2	0	0.0486(3)		
02	0	-2	2g	1	0	0	0.12152(9)	$= U_{\rm iso}({\rm O};{\rm O1})$		
03	0	-2	4 <i>i</i>	1	0	1/2	0.22379(7)	$= U_{\rm iso}({\rm O};{\rm O1})$		
04	0	-2	2g	1	0	0	0.378359(12)	$= U_{\rm iso}({\rm O};{\rm O1})$		

Table S9. Crystallographic parameters of $CsLa_2Ti_2NbO_{10}$ which were refined using synchrotron X-ray powder diffraction data at 1073 K.

Lattice parameters: a = b = 3.886112(4) Å and c = 15.542047(28) Å;

Reliability factors: $R_{wp} = 7.97\%$, $R_p = 5.01\%$, $R_B = 10.9\%$ and $R_F = 9.17\%$.

^{*a*} g(X; s): Occupancy factor of X atom at the s site.

^b $U_{iso}(X; s)$: Isotropic atomic displacement parameter of X atom at the s site.

^{*c*} The following linear constraints were used in the refinement: $U_{iso}(Ti; Ti/Nb1) = U_{iso}(Nb; Ti/Nb1);$ $U_{iso}(Ti; Ti/Nb2) = U_{iso}(Nb; Ti/Nb2); U_{iso}(O; O1) = U_{iso}(O; O2) = U_{iso}(O; O3) = U_{iso}(O; O4); g(O; O1) \times 0.5 = g(O; O2) = g(O; O3) = g(O; O4).$