Supporting Information

Ultrastable Lithium-Sulfur Batteries with Outstanding Rate Capability Boosted by NiAs-Type Vanadium Sulfides

Chao Yue Zhang,^a Guo Wen Sun,^a Yun Fei Bai, ^b Zhe Dai,^a Yi Rong Zhao,^a Xiu Ping Gao, ^a Geng Zhi Sun,^{c,d} Xiao Bo Pan, ^b Xiao Jun Pan^{*a} and Jin Yuan Zhou^{*a}

a. Key Laboratory for Special Function Materials & Structural Design of the Ministry

of Education, and School of Physical Science & Technology, Lanzhou University,

222 South Tianshui Road, Lanzhou 730000, China

b. State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, China

c. Key Laboratory of Flexible Electronics & Institute of Adv. Mater., Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China

d. School of Material Science and Engineering, Henan Polytechnic University, 2001 Shiji Road, Jiaozuo 454003, China

XRD patterns

Figure S1 XRD patterns curve of the CNF.

SEM images

Figure S2 High and low-resolution SEM images of CNF and $CNF@VO_{0.9}$.

Figure S3. (a) SEM image of cut V_2S_3 nanofibers, and (b) cross-section view SEM image of a $CNF@V_2S_3$ composite nanofiber.

Raman pattern

Figure S4 Raman spectrum of CNF@V₂S₃, CNF@VO_{0.9} and CNF.

XPS spectra of O 1s cores

Figure S5 O elemental signal image of XPS of $CNF@V_2S_3$ (a) $CNF@VO_{0.9}$ (b) and CNF (c).

To make clear the origin of oxygen, the high-resolution O 1s XPS spectra of $CNF@V_2S_3$, $CNF@VO_{0.9}$ and pure CNFs have been studied together. As presented in Figure S4, the O 1s XPS peak of $CNF@V_2S_3$ are similar with that of the pure CNFs, and can be decomposed into two components, located at 533.5 and 532.0 eV, respectively; while the O 1s XPS peak of $CNF@VO_{0.9}$ can be decomposed into three components, located at 533.5, 532.0, and 529.9 eV, respectively. The peak at 529.9 eV corresponds to the V-O bonds, the peaks at 533.5 and 532.0 eV are often caused by the adsorbed H_2O and CO_2 molecules in air, respectively.¹

Optical photos

Figure S6 Photos of battery separator (a), the cycled battery separators of [CNF@V](mailto:CNF@v2s3/S(b),%20CNF@VO0.9)₂S₃/S(b), $CNF@VO_{0.9}/S(c)$ $CNF@VO_{0.9}/S(c)$ and CNF/S (d).

TGA data

Figure S7 (a) The TGA curve of CNF@V₂S₃/S composite electrode. (b) The TGA curve of $CNF@V_2S_3$ electrode in air.

For the analysis of TGA curve of $CNF@V_2S_3$ electrode in air as shown in Figure S7b, the final phase after calcination is V_2O_5 , therefore, the V_2O_5 content is about 30 wt.%. According to V element mass balance (Formula 1), the V_2S_3 content is 32.7 wt.%, and the content of the carbon is about 67.3 wt%.

$$
V_2S_3 + O_2 \rightarrow V_2O_5 \tag{1}
$$

Cross-section SEM image

Figure S8 Thickness of CNF@V₂S₃ electrode

CV analysis

	First reduction peak (V)	Second reduction peak (V)	D-value (mV)	
$CNF@V_2S_3/S$	2.054	2.325	271	
CNF@VO _{0.9}	2.029	2.307	278	
S				
CNF/S	2.026	2.308	282	
Ref.2	2.03	2.31	280	
Ref.3	2.04	2.31	270	
Ref.4	2.01	2.33	320	
Ref.5	2.01	2.29	280	
Ref.6	1.95	2.25	300	

Table S1. Positions of reduction peaks in the CV curves. 2-6

Figure S9 The initial five cycles of CV curves for (a) $CNF@V_2S_3/S$, (b) $CNF@VO_0s/S$ $CNF@VO_0s/S$ and (c) CNF/S. The Vanadium-based LSB comparison of the reduction peak position (d) in the recent literature 2-6

Electrochemical performance of host

Figure S10 The electrochemical performance of CNF@V₂S₃ based compounds without sulfur.

Capacity contribution ratios

Figure S11 Capacity contributions of soluble Li_2S_4 , Li_2S_6 and Li_2S_8 conversion (I) and insoluble Li_2S_2/Li_2S conversion (II) and the corresponding capacity ratios (II/I) at different rates for the (a) $CNF@V_2S_3$, (b) $CNF@VO_{0.9}/S$ and (c) CNF/S cathodes.

Due to the relatively slow reaction kinetics of intermediate LiPSs, it is difficult to convert them into the final reduction products $Li₂S/Li₂S₂$ completely during the reduction II, often resulting into an II/I ratio less than 3. Thus, the closer the ratio is to 3, the higher the reversible specific capacity is.

Calculation of reduction resistance

The calculation way of in situ reaction resistance: The difference between quasiopen-circuit potential and closed-circuit potential is used to calculate the overpotentials, and then the in-situ reaction resistance can be calculated as,⁷

$$
R = \frac{\Delta U}{m \times J},\tag{2}
$$

where, ΔU is the over-potential, m is the mass loading of sulfur, and J is the charge/discharge current density.

Figure S12 Long cycle comparison of the rate capabilities (a) and decay rate (b) of $CNF@V_2S_3/S$ in the recent literature.^{2, 3, 5, 8-11}

Quasi in-situ SEM image

Figure S13 SEM images of the CNF@V₂S₃/S cathodes: (a-b) before cycling, (c-d) after 100 cycles at 2 C, and (e-f) after 1000 cycles at 2 C, respectively.

EIS spectra

Figure S14 (a) The EIS curves of $CNF@V_2S_3/S$, $CNF@VO_{0.9}/S$ and CNF/S . Inset: the magnified high frequency region. (b) Nyquist plots of the $CNF@V_2S_3/S$ composites electrode before activation and after activation. Inset: the magnified high frequency region.

			Slope of low
	R_{s}	R_{ct}	frequency region
$CNF@V_2S_3/S$	0.27	2.63	1.46
$CNF@VO_{0.9}/$	0.28	3.82	0.97
S			
CNF/S	1.10	3.97	0.62

Table S2. Corresponding fitting result of *Rs* **and** *Rct* **values for the Nyquist plots.**

Table S3. Corresponding CNF@V2S3/S result of *Rs* **and** *Rct* **values for the Nyquist plots.**

			Slope of low frequency region
	R_{s}	R_{ct}	
OCV	0.28	15.2	0.83
After activation	0.27	2.63	1.46

The obtained Nyquist plots were semicircular at the high frequency section and increases sharply at the low frequency section. In the high band, the real left intersection $(-Z'')$ is related to the series resistance (R_s) .¹² The semi-circular region in the plots corresponds to the charge transfer resistance (*Rct*), indicting the interface resistance of the electrolyte and the electrode surface. In the low frequency region, the greater the slope of the curve, the greater the diffusion rate of the Li ions in the electrolyte, even the proximity of 90° may ignore the diffusion resistance.¹²

EIS spectra shown in Fig. S12 indicates that compared to $CNF@VO_{0.9}/S$ and CNF/S cathodes, the CNF ω V₂S₃/S ones show a smaller series resistance (R_s) and a charge transfer resistance (R_{ct}) ,¹² again indicating an enhanced electron/ion kinetics.¹³ And, the curve slope in the low-frequency region of $CNF@V_2S_3/S$ cathodes is much larger than those of $CNF@VO_{0.9}/S$ and CNF/S ones, further implying a higher diffusivity of electrolyte ions in $CNF@V_2S_3/S$ cathodes.

GITT analysis

Figure S15 (a-c) GITT potential response curve with time for one typical discharge step of $CNF@V_2S_3/S$, $CNF@VO_{0.9}/S$ $CNF@VO_{0.9}/S$ and CNF/S . Inset: GITT profiles of the discharging process selected rest discharge-rest period.

GITT measurement was performed by a current density at 0.2 C for 10 min and rest intervals for 10 min. The Fick's second law using the equation estimated the Li⁺ diffusion coefficients in $CNF@V_2S_3/S$ electrode:^{14, 15}

$$
D_{Li} = \frac{4}{\pi \tau} \left(\frac{m_B V_m}{M_B S}\right)^2 \left(\frac{\Delta E_s}{\tau (dE_\tau/d\sqrt{\tau})}\right)^2
$$
\n[3]

If the potential *vs.* $\tau_{1/2}$ (τ is pulse current duration time) displays a linear behavior, equation diffusion can be further simplified as below:

$$
D_{Li} + \frac{4}{\pi\tau} \left(\frac{m_B V_m}{M_B S}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2 \tag{4}
$$

Samples	Second reduction peak $(cm2 s-1)$
$CNF@V_2S_3/S$	2.857×10^{-6}
CNF@VO _{0.9} /S	1.554×10^{-7}
CNF/S	1.645×10^{-7}

Table S4 Li-ion diffusion rates between cathode and electrolyte

Optical photo

Figure S16 the Optical photo of CNF@V₂S₃/S cathode after 500 cycles.

Catalytic performance

Figure S17. a) Schematic illustration of the LiPSs' conversion on the surface of V_2S_3 ; b) EIS spectra of $CNF@V_2S_3$, $CNF@VO_{0.9}$ and CNF cells without sulfur addition. c) CV profiles of $CNF@V_2S_3$ cells under different scan rates. d) CV curves of $CNF@V_2S_3$, $CNF@VO_{0.9}$ and CNF cells at 1 mV s⁻¹; e) Tafel plots of Li₂S oxidization on CNF@V₂S₃, CNF@VO_{0.9} and CNF electrodes.

Figure S18. The sulfur high loading of $CNF@V_2S_3/S$ electrode up to 8.1 mg cm⁻²: (a) cycle performance; (b) charge and discharge profiles.

Self-discharge formula

We define the self-discharge rate as the ratio of lost discharge capacity to initial capacity:

$$
Self-discharge\ rate = \frac{C_{ini} - C_{fin}}{C_{ini}} \times 100\%
$$
\n⁽⁵⁾

where C_{ini} is the initial discharge capacity and C_{fin} is the retention capacity.¹⁶

- 1. J. M. S. C. MORANT, L. GALAN, L. SORIANO, F. RUEDA, *Sur.Sci.*, 1989, **218**, 311-345.
- 2. X. Zhu, W. Zhao, Y. Song, Q. Li, F. Ding, J. Sun, L. Zhang and Z. Liu, *Adv. Energy Mater.*, 2018, **8**, 1800201.
- 3. Z. X. Cheng, Zhubing Pan, Hui Wang, Shiqing Wang, Ruihu, *Adv. Energy Mater.*, 2017, **8**, 1702337.
- 4. T. Guo, Y. Song, Z. Sun, Y. Wu, Y. Xia, Y. Li, J. Sun, K. Jiang, S. Dou and J. Sun, *J. Energy Chem.*, 2020, **42**, 34-42.
- 5. H. Wu, Y. Huan, D. Wang, M. Li, X. Cheng, Z. Bai, P. Wu, W. Peng, R. Zhang, Z. Ji, M. Zou and X. Yan, *J. Electrochem. Soc.*, 2019, **166**, A188-A194.
- 6. X. Chen, G. Du, M. Zhang, A. Kalam, S. Ding, Q. Su, B. Xu and A. G. Al-Sehemi, *Energy*

Technol., 2019, **8**.

- 7. T. Liu, S. Sun, W. Song, X. Sun, Q. Niu, H. Liu, T. Ohsaka and J. Wu, *J. Mater. Chem. A*, 2018, **6**, 23486-23494.
- 8. Y. Song, W. Zhao, N. Wei, L. Zhang, F. Ding, Z. Liu and J. Sun, *Nano Energy*, 2018, **53**, 432- 439.
- 9. Y. Zhang, G. Xu, Q. Kang, L. Zhan, W. Tang, Y. Yu, K. Shen, H. Wang, X. Chu, J. Wang, S. Zhao, Y. Wang, L. Ling and S. Yang, *J. Mater. Chem. A*, 2019, **7**, 16812-16820.
- 10. R. Carter, L. Oakes, N. Muralidharan, A. P. Cohn, A. Douglas and C. L. Pint, *ACS Appl. Mater. Interfaces*, 2017, **9**, 7185-7192.
- 11. J. Wei, H. Su, C. Qin, B. Chen, H. Zhang and J. Wang, *J. Electroanal. Chem.*, 2019, **837**, 184- 190.
- 12. C. Yang, X. Ou, X. Xiong, F. Zheng, R. Hu, Y. Chen, M. Liu and K. Huang, *Energy Environ. Sci.*, 2017, **10**, 107-113.
- 13. X. Yang and A. L. Rogach, *Adv. Energy Mater.*, 2019, **9**, 1900747.
- 14. C. Bommier, T. W. Surta, M. Dolgos and X. Ji, *Nano Lett.*, 2015, **15**, 5888-5892.
- 15. Z. Jian, Z. Xing, C. Bommier, Z. Li and X. Ji, *Adv. Energy Mater.*, 2016, **6**.
- 16. H.S. Ryu, H. J. Ahn, K. W. Kim, J. H. Ahn, K. K. Cho and T. H. Nam, *Electrochim. Acta*, 2006, **52**, 1563-1566.