Supporting Information for

Ruthenium Single-Atom Catalysis for Electrocatalytic Nitrogen

Reduction Unveiled by Grand Canonical Density Functional Theory

Yujin Ji^{1*}, Yifan Li², Huilong Dong³, Lifeng Ding⁴ and Youyong Li^{1*}

¹ Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China

² Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong 250061, China

³ School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China

⁴ Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake, Higher Education Town, Jiangsu Province 215123, China

*Corresponding author

Supplementary Note S1

It should be noted that the definition of the grand canonical energy Ω in this manuscript is different with that in the JDFTx manual [1] because we adopt a different energy reference. In the JDFTx manual, they view the single-electron energy as a reference so the E_{SCF} needs to subtract all-electron energy contribution while in our method, the energy in the constant charge model is set as a standard and we only need to consider the electron change. We can prove that this definition difference has no influence on the relative energy/adsorption energy, namely

 $\Delta G = \Delta \Omega$

Detailed derivation is as follows:

Step 1: (Definition of physical parameters)

 μ_e : Electronic chemical potential, namely -4.66 in U=0 V/SHE.

 E_{SCF}/F : Total energy in the SCF calculation

 N_0 : Total valance electron number

N: Optimized valance electron number at a fixed electrode potential

 $N_e = N - N_0$: Number of valance electron change

Step 2: (Deduction)

JDFTx definition of the grand free energy $G = F - N\mu_e = E_{SCF} - N\mu_e$

Our definition of the grand canonical energy $\Omega = E_{SCF} + N_e \mu_e$

For a simple reaction $A+B \rightarrow AB$,

$$\Delta G = E_{SCF}(AB) - N(AB)\mu_e - [E_{SCF}(A) - N(A)\mu_e + E_{SCF}(B) - N(B)\mu_e]$$

= $E_{SCF}(AB) - E(A) - E(B) + [N(A) + N(B) - N(AB)]\mu_e$

$$= E_{SCF}(AB) - E(A) - E(B) + [N_0(A) + N_e(A) + N_0(B) + N_e(B)]$$

$$\mu_e$$

$$= \Omega(AB) - \Omega(A) - \Omega(B) + [N_0(A) + N_0(B) - N_0(AB)]\mu_e$$

 $=\Delta\Omega$

Thus,

 $\Delta G = \Delta \Omega$

As a quantitative example, we proved that this energy definition has no influence on the adsorption free energy of N_2 .

Ru-N ₄	E_{SCF}/F (eV)	N ₀	Ν	N _e	μ_{e} (eV)	G (eV)	Ω (eV)
N_2	-398.45	10	10.00	0.00	-4.66	-589.74	-543.14
*	-12030.26	252	251.23	-0.77	-4.66	-13231.10	-12056.78
*N2	-12604.90	262	261.21	-0.79	-4.66	-13822.10	-12601.18

 $\Delta G = G(*N_2) - G(N_2) - G(*) = -1.27$

$$\Delta \Omega = \Omega(*N_2) - \Omega(N_2) - \Omega(*) = -1.27$$

References

[1] http://jdftx.org/FixedPotential.html

Supplementary Note S2

Figure S1 clearly indicates that the Ru-N₄ motifs with -1.0, 0.0 and 1.0 net electrons after 5 ps MD tended to be equilibrized and the final configurations of Ru-N₄ still retained their integrities. Therefore, the GC-DFT has no influence on the stability of the Ru-N₄ catalysts under realistic conditions.

Figure S1. 5 *ps ab initio* molecular dynamic trajectories of the Ru-N₄ motifs with net charges of (a) -1.0, (b) 0.0 and (c) +1.0 electron. The insert is the top view and side view of the relaxed geometry configurations at the final state.

Figure S2. Free energy evolution diagrams for the hydrogen evolution reaction on $Ru-N_3$ and $Ru-N_4$ sites. The left and right are corresponding to the CCM and CPM, accordingly.

Table S1.	Adsorption	free energies of	of N_2 and P	*H on Ru-N	$_3$ and Ru-N $_4$	reaction sites	based of	on the
CCM and (CPM.							

$\Lambda C(aV)$	CC	CM	CPM		
$\Delta O(ev)$	*N2	*Н	*N2	*Н	
Ru-N ₃	-0.99	-0.22	-0.64	0.44	
Ru-N ₄	-1.17	-0.90	-1.08	-0.85	