Electronic Supplementary Information

Influence of Ruthenium Substitution in LaCoO₃ towards Bi-functional Electrocatalytic activity for Rechargeable Zn-Air Battery

Shivaraju Guddehalli Chandrappa,^{a,b,c} Prabu Moni,^{a,b} Dehong Chen,^c Guruprakash Karkera,^{a,b} Kunkanadu R Prakasha,^{a,b} Rachel A. Caruso,^c and Annigere S. Prakash^{*a,b}

Table S1. Crystallographic parameters for $LaCo_{1-x}Ru_xO_3$ (x = 0.0, 0.2, 0.3 and 0.5) determined from Rietveld refinement of powder x-ray diffraction patterns.

X	Space group	a Å	b Å	C Å	V ų	La (x y z)	Co, Ru (x y z)	O1 (x y z)	O2 (x y z)	R _{wp} %	χ²
0	R <mark>3</mark> c	5.442(4)	5.442(4)	13.099(1)	336.01	0.0000 0.0000 0.2500	0.0000 0.0000 0.0000	0.45133 0.0000 0.25000		9.66	3.46
0.2	R3c	5.521(4)	5.521(4)	13.335(2)	352.06	0.0000 0.0000 0.2500	0.0000 0.0000 0.0000	0.45141 0.0000 0.25000		15.0	4.63
0.3	R <mark>3</mark> c	5.528(9)	5.528(9)	13.474(6)	356.71	0.0000 0.0000 0.2500	0.0000 0.0000 0.0000	0.45756 0.0000 0.25000		12.5	4.70
0.5	Pbnm	5.565(6)	5.553(2)	7.858(8)	242.89	0.52372 0.46324 0.25000	0.50000 0.0000 0.00000	0.53815 0.06166 0.25000	0.85319 0.18651 0.01711		
0.5	Pbnm	5.573(5)	5.638(0)	7.886(8)	247.83	0.51818 0.45521 0.25000	0.50000 0.00000 0.0000	0.45180 0.01574 0.25000	0.77348 0.21758 0.05963	11.7	4.14

i) Electrochemical Measurements

The electron transfer number per oxygen molecule (n) calculated from Koutecky-Levich (K-L) plots were determined by follow equation:

$$\frac{1}{J} = \frac{1}{J_k} + \frac{1}{B\omega^{1/2}}$$

Where j is the measured current density, jk is the kinetic current density and ω is the angular velocity of the disk (ω =2 π N, N is the linear rotation speed).

Where, n represents the overall number of electrons gained per oxygen, F is the Faraday constant (F= 96485 C mol⁻¹), C₀₂ is the bulk concentration of O₂ (1.21×10^{-3} mol L⁻¹), D₀₂ is the diffusion coefficient of O₂ in 0.1 M KOH electrolyte (1.86×10^{-5} cm² s⁻¹), γ is the kinetic viscosity of the electrolyte (1.009×10^{-2} cm² s⁻¹.

Fig. S1 TEM images of (a-c) LCO and (d-f) LCRO82.

Fig. S2 (a) K–L plots of the LCRO82 catalyst, **(b)** OER activity of $LaCo_{1-x}Ru_xO_{3-\delta}$ (x=0, 0.2, 0.3 and 0.5) and Pt, Ru/C catalysts. (IR corrected).

ii) Determination of Oxygen vacancy:

The oxygen non-stoichiometry (δ) of prepared LCO and LCRO82 catalysts were measured using iodometric titration method (the detailed titration procedures are in the below cited reference) and the amount of oxygen non-stoichiometry (δ) was calculated using the below-mentioned formula.¹

$$\delta = (4 - Y)m - M \qquad \text{where } n = C \times \Delta V$$

$$\frac{2m - 16n}{2m - 16n}$$

M = Molar mass of the sampleC = Concentration of
$$Na_2S_2O_3$$
Y = Average valence state of B site ΔV = Total consumption

Volume of Na₂S₂O₃ solution

m = Sample mass

Table S2. Calculated δ value of LCO and LCRO82.

Sample	ΔV in mL	δ
LCRO82	3.6	0.31
LCO	4.3	0.23

iii) XPS data

Sample	La 3d	Co 2p	O 1s	Ru 3p	Ru 3d
LCO	3d _{5/2} : 833.57 eV 3d _{3/2} : 849.86 eV	2 P _{3/2} : 780.91 eV (Co ²⁺) 779.56 eV (Co ³⁺) 2 P _{1/2} : 796.12 eV (Co ²⁺) 794.71 eV (Co ³⁺)	528.74 eV	-	-
LCRO82	3d _{5/2} : 833.82 eV 3d _{3/2} : 850.07 eV	2 P _{3/2} : 780.49 eV (Co ²⁺) 779.22 eV (Co ³⁺) 2 P _{1/2} : 795.99 eV (Co ²⁺) 794.72 eV (Co ³⁺)	528.78 eV	2 P _{3/2} : 464.27 eV and 2 P _{1/2} :486.55 eV	3d _{5/2} :282.48 eV and 3d _{3/2} :286.58 eV

Table S3. XPS binding energy data for LCO and LCRO82 catalysts.

Table S4. The relative amounts of different Co species in the LCO and LCRO82 samples (obtained from area under fitted XPS peaks).

Sample	Co ²⁺ 2 P _{1/2}		Co ³⁺ 2 P _{1/2}		Co ²⁺ 2 P _{3/2}		Co ³⁺ 2 P _{3/2}		Co ^{2+/} Co ³ ⁺ ratio				
	Peak position	FWHM	Area	Peak position	FWHM	Area	Peak position	FWHM	Area	Peak position	FWHM	Area	
LCO	796.69	3.16	6777	794.86	2.06	6724	781.22	3.06	13532	779.62	1.75	13428	1.01
LCRO82	796.07	3.08	6489	794.68	2.10	4318	780.68	3.01	12957	779.31	1.76	8621	1.50

Note: A line shape with 30% Lorentzian ratio was used for peak fitting. FWHM = full width at half maximum.

Table S5. The relative amount of the four different surface oxygen species of LCO and LCRO82.(Obtained from area under fitted XPS peaks).

	0 ²⁻				0 ₂ ²⁻ /0 ⁻			OH ⁻ /O ₂		H ₂ O		
Sample	Peak position	FWHM	(At.)%	Peak position	FWHM	(At.)%	Peak position	FWHM	(At.)%	Peak position	FWHM	(At.)%
LCO	528.74	1.18	43.53	530.22	1.69	16.16	531.28	1.35	30.27	532.25	1.59	10.04
LCRO82	528.78	1.20	43.95	530.16	1.82	23.57	531.31	1.42	24.08	532.42	1.65	8.41

Note: A line shape with 30% Lorentzian ratio was used for peak fitting. FWHM = full width at half maximum.

iv) Impedance data collection and analysis

The electrochemical impedance data has been collected at OCV voltage with Pt,Ru/C, LCO and LCRO82 as cathodes in Zinc-air batteries. The impedance data have been analyzed using ZSimpWin version 3.10 software and R(QR)(QR)W equivalent circuit is used for the fitting. **Figure S3**, shows the fitting of impedance data of Pt,Ru/C, LCO and LCRO82 catalysts and the values of fitted parameters are given in **table S6**.

Fig. S3 Fitted Impedance spectra of Zn-air cell using Pt,Ru/C, LCO and LCRO82 catalysts at OCV voltage.

Table S6. Values of the R _s	, R _{int} and R _{ct} obtained by simulated o	data of an impedance spectrum.
--	--	--------------------------------

Sample	R _s / ohm	R₁/ ohm	R ₂ / ohm	
LCO	0.53	0.88	10.4	
LCRO82	1.03	0.40	0.54	
Pt, Ru/C	0.95	0.44	1.51	

Table S7. Comparison of bi-functional electrocatalytic activity of reported various perovskiteelectrocatalysts.

Catalyst	ORR Performance	OER performance	ΔΕ (V)	OER Tafel slope (mV dec ⁻¹)	Reference
LCRO82	E _{j=3} - 0.63 V vs RHE	E _{j=10} - 1.69 V vs RHE	1.06 V vs RHE	43	Our work
La _{0.9} FeO ₃	E _{j=3} - 0.38 V vs RHE	E _{j=10} - 1.64 V vs RHE	1.26 V vs RHE	54	Chem. Mater. 2016, 28, 1691–1697. ²
LaNi _{0.8} Fe _{0.2} O ₃ /VC	E _{j=3} ≈ −0.64 vs RHE	E _{j=10} ≈0.74 vs RHE	1.10 vs RHE	-	<i>J. Mater. Chem.</i> <i>A</i> , 2015, <i>3</i> , 9421- 9426. ³
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$	E _{j=3} - 0.61 V vs RHE	E _{j=10} - 1.73 V vs RHE	1.12 V vs RHE	129	Adv. Mater. 2015, 27, 266–271. ⁴
$La_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3$	E _{j=3} - 0.63 V vs RHE	E _{j=10} - 1.82 V vs RHE	1.19 V vs RHE	-	ChemSusChem 2015, 8, 1058−1065 . ⁵
$La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$	E _{j=3} - 0.70 V vs RHE	E _{j=10} -1.73 V vs RHE	1.03 V vs RHE	113	Electrochimica Acta, 254, (2017), 14-24. ⁶
LaNi _{1-x} Mg _x O ₃	E _{j=3} - 0.71 V vs RHE	E _{j=10} -1.864 V vs RHE	1.15 vs RHE	-	Journal of Power Sources, 265, (2014) 91-96. ⁷
La _{0.8} Sr _{0.2} Mn _{1-x} Ni _x O ₃	E _{j=3} - 0.71 V vs RHE	E _{j=10} -1.87 V vs RHE	1.16 vs RHE	-	ACS Appl. Mater. Interfaces 2016, 8, 10, 6520– 6528. ⁸
Co-doped LaMnO ₃ /N- doped CNT	E _{j=3} - -0.25 V vs SCE	E _{j=11.7} - 0.76 V vs SCE	-	-	<i>Electrochemistry</i> <i>Comm.,</i> 60, 2015, 38-41. ⁹
La _{1-x} Y _x MnO ₃	E _{onset} -0.96 V vs. RHE	E _{onset} -1.65 V vs. RHE	-	-	Energy, 154,2018, 561-570 . ¹⁰
$La_{1.7}Sr_{0.3}Co_{0.5}Ni_{0.5}O4_{4+\delta}$	E _{onset} -0.696 V vs. RHE	E _{j=11.7} - 1.85 V vs RHE	-	-	Applied Surface Science, 2019, 464, 494-501. ¹¹
$Pr_{0.5}Ba_{0.5}MnCo_{0.2}O_3$ nanofiber/VC	E _{j=3} ≈0.70 vs. RHE	E _{j=10} ≈1.83 vs. RHE	1.13	-	ECS Transactions, 2016, 75, 955- 964. ¹²

Table S8. The performance of rechargeable liquid Zn–air batteries with various perovskite electrocatalysts.

Catalyst	Current	Overpotential	Cyclic	Power Density	Reference
	density (mA cm ⁻	(V)	stability	(mW cm ⁻²)	
	2)				
LCRO82	5	0.783	240 h, 1400	139	Our work
			cycles		
$Pt/Sr(Co_{0.8}Fe_{0.2})_{0.95}P_{0.05}O_{3-\delta}$	5	0.77	80 h, 240	122	Advance Energy
			cycles		Materials,2019,10,5,19 03271. ¹³
$Ba_{0.6}Sr_{0.4}Co_{0.79}Fe_{0.21}O_{2.67}/Ni_{0.6}$	5	0.89	100 cycles	52.8	ACS Appl. Mater.
Fe _{0.4} (OH) _x [NiFe]					Interfaces, 2019, 11, 39, 35853–35862. ¹⁴
LaNiO₃@FeOOH 1:1	5	0.86	16 h, 90	-	Applied Catalysis B:
			cycles		Environmental, 262, (2020), 118291. ¹⁵
S-doped-LaCoO3	2	0.95	100 h, 300	92	Chem. Mater. 2020, 32,
			cycle		<i>8, 3439–</i> 3446. ¹⁰
$Ce_{0.9}Gd_{0.1}O_{2-\delta}$ /Pr _{0.5} Ba _{0.5} CoO ₃₋	10	0.98	200 h	207	Applied Catalysis B:
δ					(2020) 118656. ¹⁷
La _{0.9} MnO _{3- δ}	5	0.80	100 cycle	170	Electrochimica Acta,
					333 (2020) 135566. ¹⁸
Mg-doped-LaNiO ₃	10	1.3	110 h	45	ACS Appl. Energy
					Mater. 2019, 2, 1, 923–
					931.13
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$	10	-	150 cycles	127	ACS Nano 2017, 11, 11, 11594–11601. ²⁰
Ag-doped-Sm $_{0.5}$ Sr $_{0.5}$ CoO $_{3-\delta}$	10	1.17	110 cycles	104	Front. Chem. 2019, 7, 524. ²¹
MnO ₂ /La _{0.7} Sr _{0.3} MnO ₃	10	0.949	100 cycles	181.4	ACS Appl. Mater.
					Interfaces. 2019, 11, 25870. ²²
(La _{0.8} Sr _{0.2}) _{0.95} Mn _{0.5} Fe _{0.5} O ₃	10	1.0	100 cycles	105	<i>Electrochimica Acta,</i> 251 (2019) 113406. ²³

Reference

- 1 Q. Shen, S. Li, G. Yang, B. Sunden and J. Yuan, *Energies*, 2019, **12**, 410.
- 2 Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions | Chemistry of Materials, https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b04457, (accessed June 23, 2020).
- 3 D. Zhang, Y. Song, Z. Du, L. Wang, Y. Li and J. B. Goodenough, *Journal of Materials Chemistry A*, 2015, **3**, 9421–9426.
- 4 Fabrication of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Catalysts with Enhanced Electrochemical Performance by Removing an Inherent Heterogeneous Surface Film Layer - Jung - 2015 - Advanced Materials - Wiley Online Library, https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201403897, (accessed June 23, 2020).
- 5 H. W. Park, D. U. Lee, M. G. Park, R. Ahmed, M. H. Seo, L. F. Nazar and Z. Chen, *ChemSusChem*, 2015, **8**, 1058–1065.
- 6 Q. Wang, Y. Xue, S. Sun, S. Li, H. Miao and Z. Liu, *Electrochimica Acta*, 2017, **254**, 14–24.
- 7 Z. Du, P. Yang, L. Wang, Y. Lu, J. B. Goodenough, J. Zhang and D. Zhang, Journal of Power Sources, 2014, 265, 91–96.
- 8 Nickel-Doped La0.8Sr0.2Mn1–xNixO3 Nanoparticles Containing Abundant Oxygen Vacancies as an Optimized Bifunctional Catalyst for Oxygen Cathode in Rechargeable Lithium–Air Batteries | ACS Applied Materials & Interfaces, https://pubs.acs.org/doi/abs/10.1021/acsami.6b00296, (accessed June 23, 2020).
- 9 D. U. Lee, M. G. Park, H. W. Park, M. H. Seo, V. Ismayilov, R. Ahmed and Z. Chen, *Electrochemistry Communications*, 2015, 60, 38–41.
- 10 H. Miao, Z. Wang, Q. Wang, S. Sun, Y. Xue, F. Wang, J. Zhao, Z. Liu and J. Yuan, Energy, 2018, 154, 561–570.
- 11 P. Li, B. Wei, Z. Lü, Y. Wu, Y. Zhang and X. Huang, Applied Surface Science, 2019, 464, 494–501.
- 12 Y. Zhang, Y.-F. Sun and J.-L. Luo, ECS Trans., 2016, 75, 955.
- 13 X. Wang, J. Sunarso, Q. Lu, Z. Zhou, J. Dai, D. Guan, W. Zhou and Z. Shao, Advanced Energy Materials, 2020, 10, 1903271.
- 14 R. Majee, Q. A. Islam and S. Bhattacharyya, ACS Appl. Mater. Interfaces, 2019, 11, 35853–35862.
- 15 Z. Li, L. Lv, X. Ao, J.-G. Li, H. Sun, P. An, X. Xue, Y. Li, M. Liu, C. Wang and M. Liu, *Applied Catalysis B: Environmental*, 2020, **262**, 118291.
- 16 Modulation of Electronics of Oxide Perovskites by Sulfur Doping for Electrocatalysis in Rechargeable Zn–Air Batteries | Chemistry of Materials, https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b05148, (accessed June 23, 2020).
- 17 L. Gui, Z. Wang, K. Zhang, B. He, Y. Liu, W. Zhou, J. Xu, Q. Wang and L. Zhao, *Applied Catalysis B: Environmental*, 2020, **266**, 118656.
- 18 H. Miao, X. Wu, B. Chen, Q. Wang, F. Wang, J. Wang, C. Zhang, H. Zhang, J. Yuan and Q. Zhang, *Electrochimica Acta*, 2020, 333, 135566.
- 19 J. Bian, R. Su, Y. Yao, J. Wang, J. Zhou, F. Li, Z. L. Wang and C. Sun, ACS Appl. Energy Mater., 2019, 2, 923–931.
- 20 Y. Bu, O. Gwon, G. Nam, H. Jang, S. Kim, Q. Zhong, J. Cho and G. Kim, ACS Nano, 2017, 11, 11594–11601.
- 21 Y. Zhang, Y. Guo, T. Liu, F. Feng, C. Wang, H. Hu, M. Wu, M. Ni and Z. Shao, Front. Chem., , DOI:10.3389/fchem.2019.00524.
- 22 S. Yan, Y. Xue, S. Li, G. Shao and Z. Liu, ACS Appl. Mater. Interfaces, 2019, 11, 25870–25881.
- 23 R. Yuan, Y. He, W. He, M. Ni and M. K. H. Leung, Applied Energy, 2019, 251, 113406.