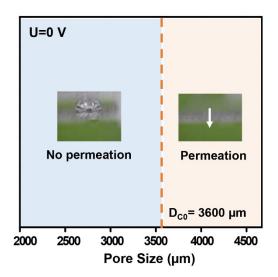
Journal of Materials Chemistry A

ARTICLE

Electronic Supplementary Information (ESI)

Fast adaptive gating system based on reconfigurable morphology of liquid metal *via* electric field on porous surfaces


Fuping Wang,^a Qiuya Zhang,^a Yan Li,^a Di Tian,^a Xiaofang Zhang,^c Dongliang Tian,^{* a,b} and Lei Jiang ^{a,b,d}

^a Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China. E-mail: tiandl@buaa.edu.cn

^b Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China

^{c.}School of Mathematics and Physics, University of Science & Technology Beijing, Beijing 100083, P. R. China

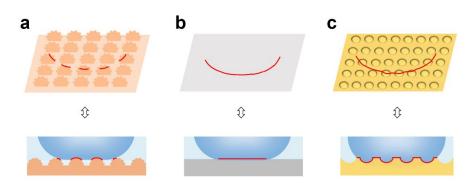

^d Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100191, P. R. China

Fig. S1 The influence of mesh pore size (*D*) on LM permeation behavior on the micro/nanostructured mesh (1 mol L⁻¹ NaOH solution) without applied voltage, the critical permeation pore size (D_{co}) is 3600 µm. LM can permeate the mesh when $D > D_{co}$, while LM cannot permeate the mesh when $D < D_{co}$.

Fig. S2 Electric field adaptive wetting and dewetting of LM droplet on the micro/nanostructured mesh in 1 mol L⁻¹ KCl solution. The black oxide layer is formed on LM droplet surface when it wets the mesh surface with voltage of 2.5 V. When the voltage of -2.5 V is applied, the black oxide layer will fall off from LM surface, and LM droplet restores to a spherical shape owing to increase of the surface tension.

Fig. S3 Schematic illustration of the triple-phase line of LM droplet on the surface of micro/nanostructure (a), flat structure (b) and microstructure (c). The length of the contact line (*L*) between the LM droplet and the solid substrate is $L_a < L_b < L_c$, *i.e.*, contact area fraction of LM droplet with the micro/nanostructure, flat structure, and microstructure on the mesh satisfies $f_{1}^{1} < f_{1}^{2} < f_{1}^{3}$, which corresponds to equation (11).