Electronic Supplementary Information

PAPER

Received 27th July 2020, Accepted 00th January 20xx

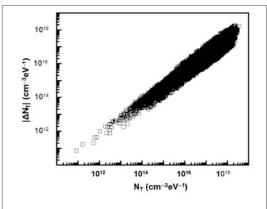
DOI: 10.1039/x0xx00000x

Nanoscale Mapping of Wavelength-Selective Photovoltaic Responses in H- and J-Aggregates of Azo Dye-based Solar Cell Films

Shashank Shekhar,^a Inkyoung Park,^a Jeongsu Kim,^a Myungjae Yang,^a Duckhyung Cho^a and Seunghun Hong *^a

^{a.} Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea. E-mail:seunghun@snu.ac.kr

[†] Footnotes relating to the title and/or authors should appear here. Electronic Supplementary Information (ESI) available: [Current and noise maps of dye solar cell films]. See DOI: 10.1039/x0xx00000x


Paper

Current Map

I (10⁻⁷A) 6 3

Fig. S1 Current map of dye solar cell film at the applied bias of $0.1\,$ V under the dark condition.

Change in trap density dependence on initial trap density

Fig. S3 Scatter plot showing the dependence of trap density change by illumination on the trap density under dark conditions.

Noise Map

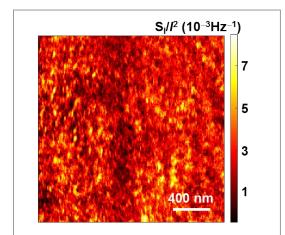


Fig. S2 Normalized noise PSD (S_i/l^2) map of the dye solar cell film under the dark condition at the applied bias of 0.1 V.