Supplementary information

Defect chemistry and transport properties of perovskite-type oxides $La_{1-x}Ca_xFeO_{3-\delta}$

Jia Song,^a Shaochen Zhu,^a De Ning^b and Henny J.M. Bouwmeester^{*acd}

^aElectrochemistry Research Group, Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

^bHelmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

^cCAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China

^{*d}Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research-IEK-1, Leo- Brandt-Str. 1,* D-52425, Jülich, Germany</sup>

	Site	x	у	Z	В	OCC
<i>x</i> = 0.05	Pnma, a = 5.54765(4) Å, b = 5.55665(3) Å, c = 7.84294(5) Å					
La	4c	0.9934(2)	0.02818(7)	0.25	0.67(1)	0.475
Са	4c	0.9934(2)	0.02818(7)	0.25	0.67(1)	0.025
Fe	4b	0	0.5	0	0.47(1)	0.5
01	8d	0.7178(11)	0.2798(11)	0.0340(9)	1.1(1)	1
02	4c	0.0784(20)	0.4879(7)	0.25	2.5(2)	0.5
<i>x</i> = 0.10	Pnma, a = 5.5408(1) Å, b = 5.54966(8) Å, c = 7.8318(1) Å					
La	4c	0.9940(5)	0.0268(1)	0.25	0.80(1)	0.45
Са	4c	0.9940(5)	0.0268(1)	0.25	0.80(1)	0.05
Fe	4b	0	0.5	0	0.61(2)	0.5
01	8d	0.7167(24)	0.2755(25)	0.0283(18)	0.8(2)	1
02	4c	0.0948(40)	0.4896(18)	0.25	4.2(5)	0.5
<i>x</i> = 0.15	Pbnm, a	a = 5.5298(1) Å	, b = 5.54268(9	9) Å, c = 7.8163	(1) Å	
La	4c	0.9938(6)	0.0256(1)	0.25	0.69(2)	0.4
Са	4c	0.9938(6)	0.0256(1)	0.25	0.69(2)	0.1
Fe	4b	0	0.5	0	0.46(3)	0.5
01	8d	0.7193(20)	0.2770(21)	0.0352(16)	0.4(2)	1
02	4c	0.0794(39)	0.4898(14)	0.25	4.3(5)	0.5
		()				
<i>x</i> = 0.20	Pbnm, d	a = 5.5216(1) Å	b = 5.5347(1)	Å, <i>c</i> = 7.8045(1) Å	
La	4c	0.9948(8)	0.0240(1)	0.25	, 0.84(2)	0.4
Са	4c	0.9948(8)	0.0240(1)	0.25	0.84(2)	0.1
Fe	4b	0	0.5	0	0.56(3)	0.5
01	8d	0.7216(31)	0.2782(29)	0.0232(21)	0.2(2)	1
02	4c	0.1092(37)	0.4927(21)	0.25	4.9(5)	0.5
<i>x</i> = 0.30	Phpm $a = 5.5026(1)$ Å $b = 5.52552(9)$ Å $c = 7.7778(1)$ Å					
La	4c	0.9950(5)	0.0216(1)	0.25	0.75(1)	0.35
Са	4c	0.9950(5)	0.0216(1)	0.25	0.75(1)	0.15
Fe	4b	0	0.5	0	0.61(1)	0.5
01	8d	0.7234(18)	0.2835(15)	0.0148(12)	0.15(9)	1
02	40	0.1179(20)	0.5012(14)	0.25	5.7(3)	0.5
02		0.117 9(20)	0.0012(11)	0120	017(0)	0.0
<i>x</i> = 0.40	Pbnm.	a = 5.4882(1) Å	b = 5.5171(1)	Å. c = 7.7572(1) Å	
La	40	0.9991(12)	0.0215(1)	0.25	0.86(1)	0.3
Ca	40	0.9991(12)	0.0215(1)	0.25	0.86(1)	0.2
Fe	4b	0.5551(12)	0.5	0	1,16(2)	0.5
01	8d	0.7267(18)	0.2806(15)	0.0142(11)	0.09(9)	1
02	4c	0 1391(18)	0 4939(17)	0.25	7 0(3)	05
		0.1001(10)	5.1555(17)	0.20	,	0.5

Table S1 Structural data of $La_{1-x}Ca_xFeO_{3-\delta}$ from Rietveld refinements of room-temperature XRD data. The numbers in parentheses denote standard deviations in units of the least significant digits.

	E _a (eV)				
х	R	ed	Ох		
	Pbnm	R3c	Pbnm	R3c	
0.05	1.80±0.02	-	1.80±0.02	-	
0.10	1.46±0.02	1.05±0.07	1.45±0.02	1.04±0.07	
0.15	1.40±0.02	0.97±0.04	1.42±0.03	0.96±0.04	
0.20	1.12±0.01	0.75±0.01	1.17±0.01	0.75±0.01	
0.30	1.53±0.01	0.98±0.01	1.40±0.04	0.95±0.01	
0.40	-	1.09±0.02	-	1.02±0.02	

Table S2 Activation energies of the chemical diffusion coefficient (D_{chem}) for La_{1-x}Ca_xFeO_{3- δ} derived from different temperature regions (designated by the space groups; *cf*. Fig. 3) in corresponding Arrhenius plots (Fig. 11a). Data are given for both oxidation (Ox) and reductions (Red) runs.

Table S3 Activation energies of the oxygen self-diffusion coefficient (D_s) for La_{1-x}Ca_xFeO_{3- δ} derived from Arrhenius plots (Fig. 12a) along with the corresponding coefficients of determination (R^2) of the linear fitting. Data are given for both oxidation (Ox) and reductions (Red) runs.

	Red		Ox	
x	Ea	R ²	Ea	R ²
	(eV)	(-)	(eV)	(-)
0.05	1.92±0.03	0.998	1.93±0.03	0.997
0.10	1.68±0.01	0.999	1.66±0.01	0.999
0.15	1.77±0.02	0.999	1.75±0.02	0.999
0.20	1.47±0.01	0.998	1.48±0.02	0.998
0.30	1.57±0.02	0.998	1.51±0.01	0.999
0.40	1.50±0.02	0.997	1.43±0.02	0.997

Table S4 Activation energies of the oxygen vacancy diffusion coefficient (D_v) for La_{1-x}Ca_xFeO_{3- δ} derived from Arrhenius plots (Fig. 12b) along with the corresponding coefficients of determination (R^2) of the linear fitting. Data are given for both oxidation (Ox) and reductions (Red) runs.

	Red		Ох	
x	ΔH _m	R ²	ΔH _m	R ²
	(eV)	(-)	(eV)	(-)
0.05	1.72±0.02	0.998	1.72±0.03	0.997
0.10	1.44±0.02	0.998	1.43±0.02	0.998
0.15	1.41±0.02	0.998	1.39±0.02	0.998
0.20	1.18±0.03	0.994	1.20±0.03	0.993
0.30	1.17±0.02	0.997	1.15±0.02	0.997
0.40	1.11±0.03	0.994	1.05±0.03	0.992

Fig. S1 Measured composition (by XRF analysis) vs nominal composition for samples La_{1-x}Ca_xFeO_{3-δ};
(a) La content and (b) Ca content.

Fig. S2 Typical measurement scheme used for thermogravimetric analysis. Data shown are for La₁₋ $_{x}Ca_{x}FeO_{3-\delta}$ (x = 0.20).

Fig. S3 (a) $^{R\ln (pO_2)}$ vs $^{1/T}$ and (b) $^{RT\ln (pO_2)}$ vs T plots for La_{0.7}Ca_{0.3}FeO_{3- δ}, at given values of $^{\delta}$, used for evaluation of the partial molar enthalpy of oxygen, $^{\Delta h_O}$, and the partial molar entropy of oxygen, $^{\Delta s_O}$. (c) $^{\Delta h_O}$ and (d) $^{\Delta s_O}$, at given values of x in La_{1-x}Ca_xFeO_{3- δ}, as a function of δ as derived from similar $^{R\ln (pO_2)}$ vs $^{1/T}$ and $^{RT\ln (pO_2)}$ vs T plots.

7

Fig. S4 pO_2 dependence of the (a) electrical conductivity (${}^{\sigma_{el}}$) and (b) electrical mobility (${}^{\mu_h}$) for La₁₋ ${}_xCa_xFeO_{3-\delta}$ at 800 °C. The dashed lines are drawn to guide the eye.

Fig. S5 Mobility of electron holes ($^{\mu_h}$), at 800 °C, for La_{1-x}Ca_xFeO_{3- δ} as a function of oxygen content ($3 - \delta$). The dashed lines are drawn to guide the eye.

Fig. S6 Inverse temperature dependence of the thermodynamic factor for $La_{1-x}Ca_xFeO_{3-\delta}$, at $pO_2 = 0.147$ atm, calculated from data of thermogravimetry (*cf.* Fig. 4). The specified pO_2 corresponds to the logarithmic average of the step change in pO_2 (0.10 \leftrightarrow 0.215 atm) used in the ECR measurements.

Fig. S7 Comparison of the oxygen vacancy diffusion coefficients (D_v) for La_{1-x}Ca_xFeO_{3- δ} (this work) with data for selected perovskite-type oxides from literature. Data for La_{0.9}Ca_{0.1}FeO_{3- δ} (LCF91) from Ref. 1, La_{0.8}Ca_{0.2}FeO_{3- δ} (LCF92) from Ref. 2, La_{1-x}Sr_xFeO_{3- δ} (x = 0.1 (LSF91), x = 0.25 (LSF7525)) from Ref. 3, La_{0.5}Sr_{0.5}FeO_{3- δ} (LSF55) from Ref. 4, La_{1-x}Sr_xCoO_{3- δ} (x = 0.2 (LSC82), x = 0.5 (LSF55)) from Ref. 5, and La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3- δ} (LSCF) from Ref. 6.

References

- 1 C. Berger, E. Bucher, and W. Sitte, Solid State Ionics, 2017, 299, 46-54.
- 2 C. Berger, E. Bucher, A. Windischbache, A. D. Boese, and W. Sitte, 2018, 259, 57-66.
- 3 T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki and K. Fueki, J. Solid State Chem., 1988, 73, 179–187.
- 4 J. Yoo, A. Verma, S. Y. Wang, and A. J. Jacobson, J. Electrochem. Soc., 2005, 152, A497
- 5 R. A. De Souza, and J. A. Kilner, 1998, **106**, 175-187.
- 6 A. Esquirol, J. A. Kilner, and N. Brandon, 2004, **175**, 63-67.