Supporting Information

Vacancy-Induced Anion and Cation Redox Chemistry in Cation-Defect F-doped Anatase TiO₂

Haoxin Li^{ab}, Yining Li^{bc}, Xiaolin Zhao^{bc}, Youwei Wang^{bc}, Kexian Huang^b, Wujie Qiu*^{bc}, Jifen Wang*^a and Jianjun Liu*^{bcd}

^aSchool of Science, College of Art and Science, Shanghai Polytechnic University No.2360 Jinhai Rd., Shanghai 201209, China

^bState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China

^cCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^dSchool of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, 1 Sub-lane Xiangshan, Hangzhou, 310024, China

*Email: jliu@mail.sic.ac.cn; wjqiu1988@gmail.com; wangjifen@sspu.edu.cn

Fig. S1 (a) The structure of $Ti_{0.78} \square_{0.22}O_{1.11}$ (OH)_{0.89}. (b) structure of $Ti_{0.78} \square_{0.22}O_{1.11}F_{0.44}$ (OH)_{0.44}.

Fig. S2 Calculated temperature-dependent free energy of Ti_{0.78}D_{0.22}O_{1.11}F_{0.89} (red line) and Ti_{0.78}D_{0.22}O_{1.11}F_{0.44}(OH)_{0.44} (bule line) versus TiO₂, TiF₄ and H₂O phase mixtures.

Fig. S3 Bader charge analysis of different local structures. F with three coordination positions, O with two coordination positions as and Ti with two regions.

Fig. S4 Effects of different coordination environments on the electronic state of oxygen anions. The projected density of the O-2*p* orbital state density (pDOS) of O atoms in oxygen-doped defect titanium dioxide consists of different coordination (a) three coordination (b) two coordination.

Fig. S5 Stability of oxidation state F and O. (a) The vacancy formation energy of oxygen or fluorine atoms. (b) The integration of the projection crystal orbital Hamiltonian population (ICOHP) shows Ti-O/Ti-F bond strength.

Fig. S6 Calculated voltage plateaus of Mg²⁺ insertion and the fitting voltage curve.

Compounds	E _{DFT} (GGA)	$\Delta G_r(Expt)$ (kJ/mol)
TiO ₂	-26.90	-833.266
TiF ₃	-27.09	-1361.864
Ti	-7.85	0
Equation(I)	$\mu_{O_2} = E^{TiO_2}(GGA) - E^{Ti}(GGA) - \Delta G_r^O(Expt) $ (eV)	
Equation(II)	$\mu_{F_2} = \frac{3}{2} \{ E^{TiF_3}(GGA) - E^{Ti}(GGA) - \Delta G_r^F(Expt) \} $ (eV)	

Table S1. The calculation details of the chemical potential in the solid-phase method. Experimental values, calculated values and equations of TiO₂, TiF₃ and Ti.

Fig. S7 The a and b are the Mg migration paths in scattered-defect structures, c and d are Mg migration paths in connected-defect structures.

Fig. S8 Electrochemical characteristics of $Li_2Ti_{0.5}Mn_{0.5}O_2F$. (a) Average change of bader charge during delithiation. (b) The evolution of F coordination number in the process of delithiation.