Electronic Supplementary Information

Electrochemically fabricated MoO₃-MoO₂@NiMo heterostructure catalyst

with Pt-like activity for pH-universal hydrogen evolution reaction

Juhae Park^a, Hyunki Kim^a, Gyeong Ho Han^a, Junhyeong Kim^a, Sung Jong Yoo^b,

Hyoung-Juhn Kim^b, Sang Hyun Ahn^{a,*}

^aSchool of Chemical Engineering and Material Science, Chung-Ang University, Seoul 06974, Republic of Korea ^bCenter for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

Corresponding author

*E-mail: shahn@cau.ac.kr (Sang Hyun Ahn)

Catalysts	Electrolyte	Overpotential @ -10 mA cm ⁻² / mV	Tafel slope / mV dec ⁻¹	Loading amount / mg cm ⁻²	Reference
E-NiMo-7.5@0.02	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	27.9	25.3	0.88	This work
MoNiS@NiS/CC	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	33	80		1
Ni ₄₃ Ru ₅₇	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	41	31	0.28	2
1Ni-0.5Mo ₂ C/GNS	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	49.6	54.7	0.38	3
NiRu@N-C	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	50	36		4
Ni _{0.89} Co _{0.11} Se ₂	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	52	39	2.16	5
rGO-MoO _{3-x} - MoRu(28)	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	60	40		6
CoP-MoO ₂ /MF	$0.5~\mathrm{M}~\mathrm{H_2SO_4}$	65	85	4.17	7
3D Mo ₂ C@MoS ₂ NS	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	67	37		8
Mo–Ni ₂ P NWs/NF	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	67	77	1.13	9
MoSe ₂ - NiSe@carbon(MN11)	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	67	76.3	0.28	10
Ni ₂ P/OMM-CoN-C	$0.5~\mathrm{MH_2SO_4}$	68	37	0.26	11
3D Ni ₂ P NPs	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	69	55	10.8	12
Ni-Mo ₂ C@C	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	72	65.8	0.531	13
Ni-doped FeP/C	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	72	54	0.4	14
MoP/CNT	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	83	60	0.5	15
MoO ₂ /MoS ₂ P	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	85	19.7		16
MoP@C	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	88	50.4		17
MoSe ₂ NS/MoO ₂ NB/ CNT-M	0.5 M H ₂ SO ₄	97	69.7		18
Mo ₂ C/CTSS	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	97	48	0.75	19

 Table S1 Summary on HER performance of Ni or Mo-containing non-noble metal-based

 catalysts in acidic electrolyte from recent literature.

Catalysts	Electrolyte	Overpotential @ -10 mA cm ⁻² / mV	Tafel slope / mV dec ⁻¹	Loading amount / mg cm ⁻²	Reference
E-NiMo-7.5@0.02	1.0 M PBS	82.6	188.4	0.88	This work
Ni-B _{0.54}	1.0 M PBS	54	77	1.40	20
NiCo ₂ P _x /CF	1.0 M PBS	63	63.3		21
N-Ni	1.0 M PBS	64	106		22
Mo-Ni ₂ P NWs/NF	1.0 M PBS	84	85	1.13	9
Ni _{0.89} Co _{0.11} Se ₂	1.0 M PBS	82	78	2.16	5
$(Fe_{0.048}Ni_{0.952})_2P$	1.0 M PBS	90	82.7	1.0	23
MoP/CNT	1.0 M PBS	102	115	0.5	15
Ni-Co-Fe-P/NF-3-75	1.0 M PBS	104	121.7		24
Ni _x P/CNT	1.0 M PBS	105	100	10.0	25
Ni-doped FeP/C	1.0 M PBS	117	70	0.4	14
NiWS/CF	0.2 M PBS	120	244		26
3D Mo ₂ C@MoS ₂ NS	1.0 M PBS	121	46		8
MoP/NPG	1.0 M PBS	150	102	0.28	27
Co ₂ Ni ₁ N	1.0 M PBS	152.8	90.3	0.24	28
$\frac{11 \operatorname{IMoS}_2/\operatorname{Ni}_{2+\delta}O_{\delta}(\mathrm{OH})_{2-}}{\delta (1:1)}$	1.0 M PBS	153	106	0.8	29
Co-30Ni–B	0.5 M KPi	170	51	2.1	30
NCP holey nanosheet	1 M PBS	170	106		31
CoMoS ₄ NS/CC	1.0 M PBS	183	116	1.48	32
MoP@NC	1.0 M PBS	191	95	0.28	33

 Table S2 Summary on HER performance of Ni or Mo-containing non-noble metal-based

 catalysts in neutral electrolyte from recent literature.

Catalysts	Electrolyte	Overpotential (a) -10 mA cm ⁻² / mV	Tafel slope / mV dec ⁻¹	Loading amount / mg cm ⁻²	Reference
E-NiMo-7.5@0.02	1.0 M KOH	33.4	96.8	0.88	This work
MoNi ₄ /MoO ₂ @Ni	1.0 M KOH	15	30	43.4	34
NiMo-NWs/Ni-foam	1.0 M KOH	30	86	0.41	35
NiRu@N–C	1.0 M KOH	32	64		4
Ni(OH)2-NiMoOx/NF	1.0 M KOH	36	38		36
NMOU400	1.0 M KOH	40	116		37
CoP-MoO ₂ /MF	1.0 M KOH	42	127	4.17	7
MoP@Ni ₃ P/NF	1.0 M KOH	45	56		38
MoO ₂ /MoS ₂ P	1.0 M KOH	45	64.2		16
MoP@C	1.0 M KOH	49	54		17
Flame-like Ni(OH)2/NF	1.0 M KOH	56.4	52.8	0.71	39
R MoS ₂ @NF	1.0 M KOH	71	100	0.4-0.5	40
NiMo-EDA	1.0 M KOH	72	89	0.35	41
3D Ni ₂ P NPs	1.0 M KOH	73	73	10.8	12
NiMo/NF	1.0 M KOH	73	37.2	0.88	42
Mo-Ni ₂ P NWs/NF	1.0 M KOH	78	109	1.13	9
Ni(OH) ₂ /MoS ₂	1.0 M KOH	80	60	4.8	43
Ni _{0.89} Co _{0.11} Se ₂	1.0 M KOH	85	52	2.16	5
MoP/CNT	1.0 M KOH	86	73		15
3D Mo ₂ C@MoS ₂ NS	1.0 M KOH	86	39		8

 Table S3 Summary on HER performance of Ni or Mo-containing non-noble metal-based

 catalysts in alkaline electrolyte from recent literature.

Fig. S1 Bulk Ni/Mo ratio according to NiSO₄ concentration in deposition bath.

Fig. S2 (a) XRD patterns of CP substrate and NiMo-#. (b) The XRD patterns with normalized intensity by C(002) peak.

Fig. S3 Scale of various applied potentials and potentials of electrochemical reactions.

Fig. S4 HRTEM images of (a) E-NiMo-7.5, (b) E-NiMo-17.5, and (c) E-NiMo-20.7 with FFT patterns.

Fig. S5 (a) XRD patterns of NiMo-# and E-NiMo-# with normalized intensity by C(002) peak.

(b) Expanded XRD patterns of (a).

Fig. S6 (a) Ni 2p , (b) Mo 3d, and (c) O 1s XPS spectra for NiMo-# samples.

Fig. S7 Repeated CV curves of (a) E-NiMo-7.5, (b) E-NiMo-17.5, and (c) E-NiMo-20.7 at various scan rates in N_2 -purged 0.5 M H₂SO₄ electrolyte.

Fig. S8 Scale of various applied potentials and potentials of electrochemical reactions.

Fig. S9 (a) Chronoamperometry of E-NiMo-7.5@# at various potentials for 1800 s. (b) Calculated anodic charge densities.

Fig. S10 FESEM images of (a) E-NiMo-7.5@0.02, (b) E-NiMo-7.5@0.07, (c) E-NiMo-7.5@0.12, and (d) E-NiMo-7.5@0.17.

Fig. S11 (a) Ni 2p, (b) Mo 3d, and (c) O 1s XPS spectra for E-NiMo-7.5@# samples.

Fig. S12 (a) OCP of NiMo-7.5 in 0.5 M H_2SO_4 electrolyte as a function of time. (b) LSV of NiMo-7.5, E-NiMo-7.5@0.02, and I-NiMo-7.5 at a scan rate of 5 mV/s in in 0.5 M H_2SO_4 electrolyte.

Fig. S13 XPS survey spectra for NiMo-7.5, I-NiMo-7.5, and E-NiMo-7.5@0.02.

Fig. S14 Gas chromatography analysis of E-NiMo-7.5@0.02 depending on the measuring time.

Fig. S15 E-NiMo-7.5@0.02 after stability test. FESEM images at (a) low and (b) high magnification. (c) HRTEM image. (d) SAED pattern of (c). (e) HRTEM image with FFT patterns. (f) Dark field image and elemental mapping for Ni, Mo, and O.

Fig. S16 (a) XRD patterns of E-NiMo-7.5@0.02 before and after stability test (b) Expanded XRD patterns of (a).

Fig. S17. (a) Ni 2p, (b) Mo 3d, and (c) O 1s XPS spectra for E-NiMo-7.5@0.02 samples before

and after stability test.

Fig. S18. Nyquist plots of E-NiMo-7.5@0.02 measured at -10 mA/cm^2 in N₂-purged 0.5 M H₂SO₄, 1.0 M PBS, and 1.0 M NaOH electrolytes.

Fig. S19 Chronopotentiometry at constant current density of -10 mA/cm^2 for 24 h in N₂-purged (a)0.5 M H₂SO₄ for 20 hr in N₂-purged (b)1.0 M PBS and (c)1.0 M NaOH electrolytes in an H-type cell.

Fig. S20. Ni 2p, Mo 3d, and O 1s spectra of (a) as-prepared E-NiMo-7.5@0.02 and after the long-term stability at -10 mA/cm^2 in N₂-purged (b) 0.5 M H₂SO₄, (c) 1.0 M PBS, and (d) 1.0 M NaOH electrolytes.

References

[1] Y. Xie, Y. Liu, Z. Yang, Interfaces engineering of MoNi-based sulfides electrocatalysts for hydrogen evolution reaction in both acid and alkaline media, Int. J. Hydrog. Energy 45 (2020) 6500–6507.

[2] C. Zhang, Y. Liu, Y. Chang, Y. Lu, S. Zhao, D. Xu, Z. Dai, M. Han, J. Bao, Componentcontrolled synthesis of necklace-like hollow $Ni_X Ru_y$ nanoalloys as electrocatalysts for hydrogen evolution reaction, ACS Appl. Mater. Interfaces 9 (2017) 17326–17336.

[3] Y. Zhou, T. Lin, X. Luo, Z. Yan, J. Wu, J. Wang, Y. Shen, Mechanistic study on nickelmolybdenum based electrocatalysts for the hydrogen evolution reaction, J. Catal. 388 (2020) 122–129.

[4] Y. Xu, S. Yin, C. Li, K. Deng, H. Xue, X. Li, H. Wang, L. Wang, Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A 6 (2018) 1376–1381.
[5] B. Liu, Y.-.F. Zhao, H.-Q. Peng, Z.-Y. Zhang, C.-K. Sit, M.-F. Yuen, T.-R. Zhang, C.-S. Lee, W.-J. Zhang, Nickel–cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: An all-pH highly efficient integrated electrocatalyst for hydrogen evolution, Adv Mater. 29 (2019) 1606521.

[6] S. Liu, C. Chen, Y. Zhang, Q. Zheng, S. Zhang, X. Mu, C. Chen, J. Ma, S. Mu, Vacancycoordinated hydrogen evolution reaction on MoO_{3-x} anchored atomically dispersed MoRu pairs, J. Mater. Chem. A 7 (2019) 14466–14472.

[7] H. Zhao, Z. Li, X. Dai, M. Cui, F. Nie, X. Zhang, Z. Ren, Z. Yang, Y. Gan, X. Yin, Y. Wang, W. Song, Heterostructured CoP/MoO₂ on Mo foil as high-efficiency electrocatalysts for the hydrogen evolution reaction in both acidic and alkaline media, J. Mater. Chem. A 8 (2020) 6732–6739.

[8] S. Yang, Y. Wang, H. Zhang, Y. Zhang, L. Liu, L. Fang, X. Yang, X. Gu, Y. Wang, Unique three-dimensional Mo₂C@MoS₂ heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution, J. Catal. 371 (2019) 20–26.
[9] Y. Sun, L. Hang, Q. Shen, T. Zhang, H. Li, X. Zhang, X. Lyu, Y. Li, Mo doped Ni₂P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values, Nanoscale 9 (2017) 16674–16679.

[10] C. Liu, K. Wang, X. Zheng, X. Liu, Q. Liang, Z. Chen, Rational design of MoSe₂-NiSe@carbon heteronanostructures for efficient electrocatalytic hydrogen evolution in both acidic and alkaline media, Carbon 139 (2018) 1–9.

[11] T. Sun, J. Dong, Y. Huang, W. Ran, J. Chen, L. Xu, Highly active and stable electrocatalyst of Ni₂P nanoparticles supported on 3D ordered macro-/mesoporous Co–Ndoped carbon for acidic hydrogen evolution reaction, J. Mater. Chem. A 6 (2018) 12751– 12758.

[12] Y. Lin, L. He, T. Chen, D. Zhou, L. Wu, X. Hou, C. Zheng, Cost-effective and environmentally friendly synthesis of 3D Ni₂P from scrap nickel for highly efficient hydrogen evolution in both acidic and alkaline media, J. Mater. Chem. A 6 (2018) 4088–4094.
[13] F. Yu, Y. Gao, Z. Lang, Y. Ma, L. Yin, J. Du, H. Tan, Y. Wang, Y. Li, Electrocatalytic performance of ultrasmall Mo₂C affected by different transition metal dopants in hydrogen evolution reaction, Nanoscale 10 (2018) 6080–6087.

[14] X. F. Lu, L. Yu, X. W. Lou, Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts, Sci. Adv. 5 (2019) eaav6009.
[15] X. Zhang, X. Yu, L. Zhang, F. Zhou, Y. Liang, R. Wang, Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction, Adv. Funct. Mater. 28 (2018) 1706523.

[16] C. Jian, W. Hong, Q. Cai, J. Li, W. Liu, Surface electron state engineering enhanced hydrogen evolution of hierarchical molybdenum disulfide in acidic and alkaline media, Appl. Catal. B-Environ. 266 (2020) 118649.

[17] G. Li, Y. Sun, J. Rao, J. Wu, A. Kumar, Q. N. Xu, C. Fu, E. Liu, G. R. Blake, P. Werner,
B. Shao, K. Liu, S. Parkin, X. Liu, M. Fahlman, S.-C. Liou, G. Auffermann, J. Zhang, C. Felser,
X. Feng, Carbon-tailored semimetal MoP as an efficient hydrogen evolution electrocatalyst in
both alkaline and acid media, Adv. Energy Mater. 8 (2018) 1801258.

[18] L. J. Yang, Y. Q. Deng, X. F. Zhang, H. Liu, W. J. Zhou, MoSe₂ nanosheet/MoO₂ nanobelt/carbon nanotube membrane as flexible and multifunctional electrodes for full water splitting in acidic electrolyte, Nanoscale, 10 (2018) 9268–9275.

[19] Z. Xu, G. Zhang, C. Lu, H. Tian, X. Xi, R. Liu, D. Wu, Molybdenum carbide nanoparticle decorated hierarchical tubular carbon superstructures with vertical nanosheet arrays for efficient hydrogen evolution, J. Mater. Chem. A 6 (2018) 18833–18838.

[20] P. Zhang, M. Wang, Y. Yang, T. Yao, H. Han, L. Sun, Electroless plated Ni– B_x films as highly active electrocatalysts for hydrogen production from water over a wide pH range, Nano Energy 19 (2016) 98–107.

[21] R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang, W. Hu, Ternary $NiCo_2P_x$ nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction, Adv. Mater. 29 (2017) 1605502.

[22] B. You, X. Liu, G. Hu, S. Gul, J. Yano, D.-E. Jiang, Y. Sun, Universal surface engineering of transition metals for superior electrocatalytic hydrogen evolution in neutral water, J. Am. Chem. Soc. 139 (2017) 12283–12290.

[23] W. Zhang, Y. Zou, H. Liu, S. Chen, X. Wang, H. Zhang, X. She, D. Yang, Singlecrystalline (Fe_xNi_{1-x})₂P nanosheets with dominant {011⁻¹} facets: Efficient electrocatalysts for hydrogen evolution reaction at all pH values, Nano Energy 56 (2019) 813–822. [24] K. Wang, Y. Si, Z. Lv, T. Yu, X. Liu, G. Wang, G. Xie, L. Jiang, Efficient and stable Ni–Co–Fe–P nanosheet arrays on Ni foam for alkaline and neutral hydrogen evolution, Int. J. Hydrog. Energy 45 (2020) 2504–2512.

[25] S. Wnag, L. Zhang, X. Li, R. Zhang, Y. Zhang, H. Zhu, Sponge-like nickel phosphide– carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range, Nano Res. 2 (2017) 415–425.

[26] S.-S. Lu, X. Shang, L.-M. Zhang, B. Dong, W.-K. Gao, F.-N. Dai, B. Liu, Y.-M. Chai, C.-G. Liu, Heterostructured binary Ni-W sulfides nanosheets as pH-universal electrocatalyst for hydrogen evolution, Appl. Surf. Sci. 445 (2018) 445–453.

[27] R. Ge, J. Huo, T. Liao, Y. Liu, M. Zhu, Y. Li, J. Zhang, W. Li, Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction, Appl. Catal. B-Environ. 260 (2020) 118196.

[28] X. Feng, H. Wang, X. Bo, L. Guo, Bimetal–organic framework-derived porous rodlike cobalt/nickel nitride for all-pH value electrochemical hydrogen evolution, ACS Appl. Mater. Interfaces 11 (2019) 8018–8024.

[29] X. Zhang, Y. Liang, Nickel hydr(oxy)oxide nanoparticles on metallic MoS₂ nanosheets: A synergistic electrocatalyst for hydrogen evolution reaction, Adv. Sci. 5 (2018) 1700644.

[30] S. Gupta, N. Patel, R. Fernandes, A. Dashora, A. K. Yadav, D. Bhattacharyya, S. N. Jha,
A. Miotello, D. C. Kothari, Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction
in wide pH range, Appl. Catal. B-Environ. 192 (2016) 123–133.

[31] Z. Fang, L. Peng, Y. Qian, X. Zhang, Y. Xie, J. J. Cha, G. Yu, Dual tuning of Ni–Co–A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution, J. Am. Chem. Soc. 140 (2018) 5241–5247.

[32] X. Ren, D. Wu, R. Ge, X. Sun, H. Ma, T. Yan, Y. Zhang, B. Du, Q. Wei, L. Chen, Selfsupported CoMoS₄ nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH, Nano Res. 11 (2018) 2024–2033.

[33] C. Pi, C. Huang, Y. Yang, H. Song, X. Zhang, Y. Zheng, B. Gao, J. Fu, P. K. Chu, K. Huo, *In situ* formation of N-doped carbon-coated porous MoP nanowires: a highly efficient electrocatalyst for hydrogen evolution reaction in a wide pH range, Appl. Catal. B-Environ. 263 (2020) 118358.

[34] J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng,Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,Nat. Commun. 8 (2017) 15437.

[35] M. Fang, W. Gao, G. Dong, Z. Xia, S. Yip, Y. Qin, Y. Qu, J. C. Ho, Hierarchical NiMobased 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions, Nano Energy 27 (2016) 247–254.

[36] Z. Dong, F. Lin, Y. Yao, L. Jiao, Crystalline Ni(OH)₂/amorphous NiMoO_x mixedcatalyst with Pt-like performance for hydrogen production, Adv. Energy. Mater. 9 (2019) 1902703.

[37] S. Deng, X. Liu, T. Huang, T. Zhao, Y. Lu, J. Cheng, T. Shen, J. Liang, D. Wang, MoO₂ modulated electrocatalytic properties of Ni: investigate from hydrogen oxidation reaction to hydrogen evolution reaction, Electrochim. Acta 324 (2019) 134892.

[38] F. Wang, J. Chen, X. Qi, H. Yang, H. Jiang, Y. Deng, T. Liang, Increased nucleation sites in nickel foam for the synthesis of MoP@Ni₃P/NF nanosheets for bifunctional water splitting, Appl. Surf. Sci. 481 (2019) 1403–1411.

[39] Y. Zhou, C. Sun, X. Yang, G. Zou, H. Wu, S. Xi, Flame-like Ni(OH)₂ strongly promotes the dissociation of water and can be used to produce an excellent hybrid electrocatalyst for the hydrogen evolution reaction in alkaline media, Electrochem. Commun. 91 (2018) 66–70.

21

[40] M. A. R. Anjum, H. Y. Jeong, M. H. Lee. H. S. Shin, J. S. Lee, Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS₂ with multifunctional active sites, Adv. Mater. 30 (2018) 1707105.

[41] W. Gao, W. Gou, X. Zhou, J. C. Ho, Y. Ma, Y. Qu, Amine-modulated/engineered interfaces of NiMo electrocatalysts for improved hydrogen evolution reaction in alkaline solutions, ACS Appl. Mater. Interfaces 10 (2018) 1728–1733.

[42] D. Huang, S. Li, Y. Luo, L. Liao, J. Ye, H. Chen, Self-templated construction of 1DNiMo nanowires *via* a Li electrochemical tuning method for the hydrogen evolution reaction,Nanoscale 11 (2019) 19429–19436.

[43] B. Zhang, J. Liu, J. Wang, Y. Ruan, X. Ji, K. Xu, C. Chen, H. Wan, L. Miao, J. Jiang, Interface engineering: The Ni(OH)₂/MoS₂ heterostructure for highly efficient alkaline hydrogen evolution, Nano Energy 37 (2017) 74–80.