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Experimental Section

Uniform Ni-MOFs precursor spheres synthesis. All the chemicals were directly used 

after purchase without further purification. The hydrothermal method was followed to 

synthesize Ni-MOFs precursors.1 Under vigorous magnetic stirring, a mixture of 

0.605 g Ni(NO3)2·6H2O, 0.21 g trimesic acid, and 2.1 g of PVP-K30 (Mw = 40000) 

was dissolved in 42 mL mixture of DMF, ethanol, and water (1:1:1, v/v/v). Then the 

mixture was sealed in 70 mL Teflon-lined autoclave and heated to 150 °C for 10 h. 

Afterward, the green precipitate was washed by DMF and ethanol for several times 

and dried in a vacuum oven at 60 °C for 12 h. 

Yolk−shell (YS) Ni2P1-xSx/Ni@C/G spheres synthesis. The YS NiP1-xSx/Ni@C/G 

spheres were obtained via a one-step process. Briefly, 50 mg Ni-MOFs precursor 

spheres, and the mixture of red P and S powder were separately placed in two quartz 

boats, and the mixture of red P and S powder was placed at the upstream zone in a 

tube furnace. The varied mass ratio of P and S (2:1, 1:1, and 1:2) was first mixed with 

80 mg of powder using mortar and pestle to synthesize samples with different S/P 

ratios. Then, the furnace was set to increase up to 450 °C for 2 h with a ramp rate of 1 

°C min-1 bypassing Ar atmosphere to obtain YS Ni2P1-xSx/Ni@C/G microspheres. For 

comparison, the pure S powder and P powder replace the mixture of red P and S 

powder under the same above condition, respectively, were denoted as Ni9S8/Ni@C/G, 

and Ni2P/Ni@C/G composites, respectively. Moreover, the Ni-MOF precursor was 

calcined in air at 420 °C for 3h with 1 °C min-1, and the porous NiO was obtained. 

Then, 50 mg porous NiO was phosphated by 750 mg NaH2PO2·H2O at 350 °C for 2h 

to synthesize Ni2P, and sulfided by 100 mg S power at 450 °C for 2h and then 600 °C 

1h to prepare Ni9S8/NiS in Ar atmosphere, respectively. 

Materials Characterization. X-ray diffraction (Bruker D8 ADVANCE) with Cu Kα 

radiation was employed to identify the composition and phase structure of the as-

prepared Ni-based hybrids. Field emission scanning electron microscopy SEM 

(FESEM, SU8220, 20 kV) operating at 5 kV was used to characterize the morphology. 

TEM, HAADF-STEM, and elemental mapping images were recorded on an FEI 

Tecnai F20 transmission electron microscope. The valence state of the samples was 

investigated by X-ray photoelectron spectroscopy (XPS, Axis Ultra DLD, Kratos), 

using a monochromatic Al-Kα as radiation exciting source. N2 adsorption/desorption 

isotherm was investigated at 77K with an automated gas sorption analyzer 



(Micromeritics ASAP 2460). The carbon and power contents in the hybrids were 

determined by thermogravimetric analysis (TGA, TGA/DSC 3+, Switzerland) under 

Ar and air atmosphere with a heating rate of 10 °C min-1, respectively. 

Fabrication of half-cell and full-cell. The electrochemical performances of as-

prepared YS Ni-based composites were performed via CR2025 coin-type cells. For 

fabrication of the working electrodes, the slurry of working electrodes consisted of 70 

wt % active materials of the YS Ni-based composites, 20 wt % acetylene black, and 

10 wt % polyvinylidene fluoride in methyl-2-pyrrolidone, which were mixed, then 

coated on Cu foil and dried at 80 °C under vacuum for 12 h. The mass loading of each 

working electrode was ~ 1.0 - 1.1 mg cm-2. For sodium-ion batteries (SIBs) half-cell, 

sodium foil was the counter electrode, and the was the 1 M NaClO4 in ethylene 

carbonate (EC)/diethyl carbonate (1:1, v/v) with 5 wt % fluoroethylene carbonate was 

used as the electrolyte. For potassium ion batteries (PIBs) half-cell, the potassium foil 

was employed as the counter electrode, and the electrolyte in the cell was 1 M KPF6 

in EC/propylene carbonate (1:1 v/v). SICs full cell was also fabricated with the 

optimized Ni2P0.75S0.25/Ni@C/G as the anode and activated carbon (AC) as the 

cathode in the same electrolyte, and the mass ratio of cathode/anode was 3:1. A 

Whatman GF/F glass microfiber filter was used as the separator for SIBs, PIBs, and 

SICs.

Electrochemical testing. Galvanostatic discharge/charge (GDC) test and cycle-life 

tests were performed on a Land 2001A tester (Wuhan Land Electronics. Ltd.). Cyclic 

voltammetry (CV), GDC measurements of NICs, and electrical impedance 

spectroscopy (EIS) test from 100 kHz to 10 mHz. The specific capacitance (C, F g-1), 

energy density (E, Wh kg-1) and power density (P, W kg-1) of NICs were calculated 

using the following equations 2, 3: 

C = I / [(dV / dt) × m] ≈ IΔt/mΔV,

E = 0.5 CV2

P = E/t

where I is the discharge current, Δt is the discharge time (s), m is the total mass of 

active material of the two electrodes, and V stands for working voltage, respectively.

Computational Methods. The first principle calculations have been employed to 

calculate the Na+ ion adsorption energy and diffusion energy barrier of Ni2P (111), 



Ni9S8 (222), and layer-Ni2P (111)-Ni9S8 (222) hetero-structure, respectively. The 

lattice mismatch was as follows: Δu = -4.94%, Δv = -3.17%. All calculations were 

based on density functional theory (DFT) and performed using the Cambridge Serial 

Total Energy Package (CASTEP) module, employing the ultra-soft pseudo-potential.4 

The exchange-correlation functional under the generalized gradient approximation 

(GGA) level was carried out using the Perdew-Burke-Ernzerhof (PBE) for solids 

functional.5 The cut-off energy and the vacuum distance between the slabs were set to 

517 eV and 20 Å, respectively. The Broyden-Fletcher-Goldfarb-Shanno scheme was 

employed as the minimization algorithm in the geometric optimization process until 

the force of each atom was smaller than 0.03 eV/Å.6 The Brillouin zone was set as 3 × 

3 × 1 k-grid, and the vacuum distance between the slabs was set to 20 Å. 

In the computation of the Na+ adsorption energy, the following equation was 

performed:

Eads = Eslab-substrate-Na+ - (Eslab-substrate + Eslab-Na+)               

where Eslab-substrate and Eslab-Na+ are the total energy of the relaxed, isolated 

substrate slabs (Ni2P (111), Ni9S8 (222), and Ni2P(111)-Ni9S8(222) interface) and 

single Na+ in the same slab, respectively. Eslab-substrate-Na+ is the total energy of the slab-

substrate-Na+ system. The migration barrier of Na-ion was conducted using the 

supercell by the complete LST/QST method in the CASTEP module.  



Figure S1 (a) SEM, (b) TEM image, and (c) Coordination environments of Ni2+ ions 

in the asymmetric units of Ni-MOF.

Figure S2 TGA-DSC curves of Ni-MOF in the Ar and air atmosphere.
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Figure S3 SEM images and EDX spectra of YS Ni2P1-xSx/Ni@C/G, where (a, b), (c, 

d), and (e, f) correspond to x = 0.25, 0.42, and 0.53, respectively.

Table S1 The x value of the Ni2P1-xSx/Ni@C/G determined by EDX.

Mass weightSample X value

P power (g) S power (g)

YS Ni2P/Ni@C/G 0 0.080 0

YS Ni2P0.75S0.25/Ni@C/G 0.25 0.053 0.027

YS Ni2P0.58S0.42/Ni@C/G 0.42 0.040 0.040

YS Ni2P0.37S0.53/Ni@C/G 0.53 0.027 0.053

YS Ni9S8/Ni@C/G 0.89 0 0.080
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Figure S4 Raman spectra of Ni2P/Ni@C/G, Ni9S8/Ni@C/G, and 

Ni2P0.75S0.25/Ni@C/G, respectively.
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Figure S5 (a) SEM images of (a) YS Ni2P/Ni@C/G, (b) YS Ni9S8/Ni@C/G, and (c-f) 

YS Ni2P1-xSx/Ni@C/G, respectively.
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Figure S6 TEM images of YS Ni2P0.75S0.25/Ni@C/G. 

Figure S7 SEM images of porous (a) NiO, (b) Ni2P, (c) Ni9S8/NiS, and (d) their 

corresponding XRD patterns, respectively. 
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Figure S8 (a) XPS full survey spectra of YS NiP1-xSx/Ni@C/G, Ni2P/Ni@C/G and 

Ni9S8/Ni@C/G, (b) Ni 2p in YS Ni2P/Ni@C/G, (c) Ni 2p in YS Ni9S8/Ni@C/G, (d) C 

1s in YS Ni2P0.75S0.25/Ni@C/G.

Figure S9 (a) N2 adsorption-desorption isotherms and (b) pore-size distribution of YS 

Ni2P/Ni@C/G, YS Ni9S8/Ni@C/G, and YS Ni2P0.75S0.25/Ni@C/G, respectively.
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Figure S10 Surface wetting of H2O droplet on (a, b) YS Ni9S8/Ni@C/G, (c, d) 

YS Ni2P/Ni@C/G, and (d, f) YS Ni2P0.75S0.25/Ni@C/G, respectively.

Figure S11 CV curves of YS Ni2P0.75S0.25/Ni@C/G at a current density of 0.2 

mV S-1.
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Figure S12 (a) Cycling stability at 100 mA g-1 and (a) rate capabilities of YS 

Ni2P0.58S0.42/Ni@C/G and YS Ni2P0.37S0.53/Ni@C/G for SIBs, respectively.

Figure S13 Cycling stability at 100 mA g-1 and rate capabilities of (a, b) Ni2P, 

and (c, d) Ni9S8/NiS for SIBs, respectively.
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Figure S14 (a) Nyquist impedance plots of Ni2P and Ni9S8/NiS after 100 cycles, and 

(b) the relationship plot between Z′ and ω–1/2. 

Table S2 Electrochemical impedance parameters of as-obtained Ni-based anodes for 

SIBs from equivalent circuit fitting of experimental data.

Sample Cycle number Rs/Ohm Rf/Ohm Rct/Ohm

Ni9S8/NiS 100th cycle 5.7 109.3 319.0

YS Ni9S8/Ni@C/G 100th cycle 4.6 28.89 56.6

Ni2P 100th cycle 5.4 107.8 208.1

YS Ni2P/Ni@C/G 100th cycle 4.7 25.3 36.9

YS Ni2P0.75S0.25/Ni@C/G 100th cycle 4.7 24.9 36.0

YS Ni2P0.58S0.42/Ni@C/G 100th cycle 4.8 26.7 37.6

YS Ni2P0.37S0.63/Ni@C/G 100th cycle 4.6 26.4 38.3

Equations (1) and (2):

Where R is the gas constant, T is the absolute temperature, A is the surface area of 

the electrode, n is the number of transferred electrons per molecule, F is the Faraday 

constant, c is the molar concentration of Na+ ions, R′ mainly involves the interface 

impedance and charge transfer resistances for these electrodes, ω (ω = 2 ᴨ f) is the 

angular frequency, and σw is the Warburg factor (Z′ ∝ σwω-1/2), respectively.
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Figure S15 (a) CV scans of YS Ni2P0.75S0.25/Ni@C/G at various rates and (b) 

correspondingly fitted b-value at respective redox peaks for SIBs anode.

Figure S16 SEM images of (a, b) YS Ni2P0.75S0.25/Ni@C/G, (c) YS 

Ni2P0.58S0.42/Ni@C/G and (d) YS Ni2P0.37S0.53/Ni@C/G after 100 cycles at 100 mA g-1, 

respectively.
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Figure S17 (a) GCD curves, and (b) cycle performance at 2 A g−1 of the AC cathode 

for Na-storage.
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Figure S18 GDC curves of SICs with different mass ratios (anode: cathode, 1:1, 1:2, 

1:3, and 1:4) at a current density of 0.5 A g-1. 
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Figure S19 (a, c, e) Side-, and (b, d, f) top-views schematic model of the Ni (111), 

Ni9S8 (222), and the Ni9S8 (222)-Ni, and (g) DOS curves for Ni (111), Ni9S8 (222), 

and the Ni9S8 (222)/Ni. 

Figure S20 (a) The first charge-discharge profile and (b) its corresponding ex-situ 

XRD patterns of YS Ni2P0.75S0.25/Ni@C/G anode in PIBs at the different voltage 

platforms. 
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Table S3 Performance comparison of between Ni2P0.75S0.25/Ni@C/G and the 

reported anode materials for PIBs
Sample Cycling

performance (mAh g-1)/cycle 

number, current density (mA g-1)

Rate capability 

(mAh g-1)/current 

density (mA g-1)

Reference

Ni2P0.75S0.25/Ni@C/G 372/200, 150 238/3200 This work

NiS2@C@C 303/100, 50 151/1610 Adv. Funct. Mater. 2019, 29, 

1903454

ZnSe-FeSe2/RGO 363/100, 50 -- J. Power Sources 2020, 455, 

227937

Y-S NiSx@C 364/200, 100 232/2000 J. Mater. Chem. A, 2019, 7, 

18932

mp-Co9S8@C/rGO 408/100, 200 278/2000 Nano Res. 2020, 13, 802-809

Fe-Ni-P hollow 

nanoframes

60/700, 200 46/2000 Chem. Eng. J. 2020, 390, 124515

FeS2@G@CNF 205/100, 200 171/1000 Small 2019, 15, 1804740

Hollow V2O3@C 

sphere

330/500, 100 125/2000 J. Mater. Chem. A, 2020, 8, 

13261

r-SnP@C 355/300, 100 258/1000 Carbon 2020, 168, 468-474 

CoP⊂NPPCS 127/1000, 100 54/2000 Adv. Mater. 2018, 30, 1802310

TiOxNy/C 125/100, 200 72/1600 Chem. Eng. J. 2019, 369, 828-

833

N/O Dual-dope hard 

Carbon-800

305/100, 100 223/2000 Adv. Sci. 2020, 7, 1902547

SnO2@CF 399/150, 100 247/2000 Energy Environ. Sci., 2020,13, 

571-578

NC@CoP/NC 279/100, 100 200/2000 Small 2020, 16, 1906566



Figure S21 (a) CV scans of YS Ni2P0.75S0.25/Ni@C/G at various rates, and (b) 

the shaded region shows the CV profile with the capacitive contribution at a 

scan rate of 0.6 mV s-1 for PIBs anode.
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