Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Kinetics enhanced hierarchical $Ni_2P_{1-x}S_x/Ni@carbon/graphene yolk-shell microspheres boosting advanced sodium/potassium storage$

Experimental Section

Uniform Ni-MOFs precursor spheres synthesis. All the chemicals were directly used after purchase without further purification. The hydrothermal method was followed to synthesize Ni-MOFs precursors.¹ Under vigorous magnetic stirring, a mixture of 0.605 g Ni(NO₃)₂·6H₂O, 0.21 g trimesic acid, and 2.1 g of PVP-K30 ($M_w = 40000$) was dissolved in 42 mL mixture of DMF, ethanol, and water (1:1:1, v/v/v). Then the mixture was sealed in 70 mL Teflon-lined autoclave and heated to 150 °C for 10 h. Afterward, the green precipitate was washed by DMF and ethanol for several times and dried in a vacuum oven at 60 °C for 12 h.

Yolk–shell (YS) Ni₂P_{1-x}S_x/Ni@C/G *spheres synthesis.* The YS NiP_{1-x}S_x/Ni@C/G spheres were obtained via a one-step process. Briefly, 50 mg Ni-MOFs precursor spheres, and the mixture of red P and S powder were separately placed in two quartz boats, and the mixture of red P and S powder was placed at the upstream zone in a tube furnace. The varied mass ratio of P and S (2:1, 1:1, and 1:2) was first mixed with 80 mg of powder using mortar and pestle to synthesize samples with di□erent S/P ratios. Then, the furnace was set to increase up to 450 °C for 2 h with a ramp rate of 1 °C min⁻¹ bypassing Ar atmosphere to obtain YS Ni₂P_{1-x}S_x/Ni@C/G microspheres. For comparison, the pure S powder and P powder replace the mixture of red P and S powder under the same above condition, respectively, were denoted as Ni₉S₈/Ni@C/G, and Ni₂P/Ni@C/G composites, respectively. Moreover, the Ni-MOF precursor was calcined in air at 420 °C for 3h with 1 °C min⁻¹, and the porous NiO was obtained. Then, 50 mg porous NiO was phosphated by 750 mg NaH₂PO₂·H₂O at 350 °C for 2h to synthesize Ni₂P, and sulfided by 100 mg S power at 450 °C for 2h and then 600 °C 1h to prepare Ni₉S₈/NiS in Ar atmosphere, respectively.

Materials Characterization. X-ray diffraction (Bruker D8 ADVANCE) with Cu K α radiation was employed to identify the composition and phase structure of the asprepared Ni-based hybrids. Field emission scanning electron microscopy SEM (FESEM, SU8220, 20 kV) operating at 5 kV was used to characterize the morphology. TEM, HAADF-STEM, and elemental mapping images were recorded on an FEI Tecnai F20 transmission electron microscope. The valence state of the samples was investigated by X-ray photoelectron spectroscopy (XPS, Axis Ultra DLD, Kratos), using a monochromatic Al-K α as radiation exciting source. N₂ adsorption/desorption isotherm was investigated at 77K with an automated gas sorption analyzer

(Micromeritics ASAP 2460). The carbon and power contents in the hybrids were determined by thermogravimetric analysis (TGA, TGA/DSC 3+, Switzerland) under Ar and air atmosphere with a heating rate of 10 °C min⁻¹, respectively.

Fabrication of half-cell and full-cell. The electrochemical performances of asprepared YS Ni-based composites were performed via CR2025 coin-type cells. For fabrication of the working electrodes, the slurry of working electrodes consisted of 70 wt % active materials of the YS Ni-based composites, 20 wt % acetylene black, and 10 wt % polyvinylidene fluoride in methyl-2-pyrrolidone, which were mixed, then coated on Cu foil and dried at 80 °C under vacuum for 12 h. The mass loading of each working electrode was ~ 1.0 - 1.1 mg cm⁻². For sodium-ion batteries (SIBs) half-cell, sodium foil was the counter electrode, and the was the 1 M NaClO₄ in ethylene carbonate (EC)/diethyl carbonate (1:1, v/v) with 5 wt % fluoroethylene carbonate was used as the electrolyte. For potassium ion batteries (PIBs) half-cell, the potassium foil was employed as the counter electrode, and the electrolyte in the cell was 1 M KPF₆ in EC/propylene carbonate (1:1 v/v). SICs full cell was also fabricated with the optimized Ni₂P_{0.75}S_{0.25}/Ni@C/G as the anode and activated carbon (AC) as the cathode in the same electrolyte, and the mass ratio of cathode/anode was 3:1. A Whatman GF/F glass microfiber filter was used as the separator for SIBs, PIBs, and SICs.

Electrochemical testing. Galvanostatic discharge/charge (GDC) test and cycle-life tests were performed on a Land 2001A tester (Wuhan Land Electronics. Ltd.). Cyclic voltammetry (CV), GDC measurements of NICs, and electrical impedance spectroscopy (EIS) test from 100 kHz to 10 mHz. The specific capacitance (C, F g⁻¹), energy density (E, Wh kg⁻¹) and power density (P, W kg⁻¹) of NICs were calculated using the following equations ^{2, 3}:

$$C = I / [(dV / dt) \times m] \approx I\Delta t / m\Delta V,$$

$$E = 0.5 \ CV^2$$

$$P = E/t$$

where *I* is the discharge current, Δt is the discharge time (s), *m* is the total mass of active material of the two electrodes, and *V* stands for working voltage, respectively.

Computational Methods. The first principle calculations have been employed to calculate the Na⁺ ion adsorption energy and di \square usion energy barrier of Ni₂P (111),

Ni₉S₈ (222), and layer-Ni₂P (111)-Ni₉S₈ (222) hetero-structure, respectively. The lattice mismatch was as follows: $\Delta u = -4.94\%$, $\Delta v = -3.17\%$. All calculations were based on density functional theory (DFT) and performed using the Cambridge Serial Total Energy Package (CASTEP) module, employing the ultra-soft pseudo-potential.⁴ The exchange-correlation functional under the generalized gradient approximation (GGA) level was carried out using the Perdew-Burke-Ernzerhof (PBE) for solids functional.⁵ The cut-o \Box energy and the vacuum distance between the slabs were set to 517 eV and 20 Å, respectively. The Broyden-Fletcher-Goldfarb-Shanno scheme was employed as the minimization algorithm in the geometric optimization process until the force of each atom was smaller than 0.03 eV/Å.⁶ The Brillouin zone was set as 3 × 1 *k*-grid, and the vacuum distance between the slabs was set to 20 Å.

In the computation of the Na⁺ adsorption energy, the following equation was performed:

$$E_{ads} = E_{slab-substrate-Na^+} - (E_{slab-substrate} + E_{slab-Na^+})$$

where $E_{\text{slab-substrate}}$ and $E_{\text{slab-Na+}}$ are the total energy of the relaxed, isolated substrate slabs (Ni₂P (111), Ni₉S₈ (222), and Ni₂P(111)-Ni₉S₈(222) interface) and single Na⁺ in the same slab, respectively. $E_{\text{slab-substrate-Na+}}$ is the total energy of the slabsubstrate-Na⁺ system. The migration barrier of Na-ion was conducted using the supercell by the complete LST/QST method in the CASTEP module.

Figure S1 (a) SEM, (b) TEM image, and (c) Coordination environments of Ni^{2+} ions in the asymmetric units of Ni-MOF.

Figure S2 TGA-DSC curves of Ni-MOF in the Ar and air atmosphere.

Figure S3 SEM images and EDX spectra of YS $Ni_2P_{1-x}S_x/Ni@C/G$, where (a, b), (c, d), and (e, f) correspond to x = 0.25, 0.42, and 0.53, respectively.

Sample	X value	Mass weight	
		P power (g)	S power (g)
YS Ni ₂ P/Ni@C/G	0	0.080	0
YS Ni ₂ P _{0.75} S _{0.25} /Ni@C/G	0.25	0.053	0.027
YS Ni ₂ P _{0.58} S _{0.42} /Ni@C/G	0.42	0.040	0.040
YS Ni ₂ P _{0.37} S _{0.53} /Ni@C/G	0.53	0.027	0.053
YS Ni ₉ S ₈ /Ni@C/G	0.89	0	0.080

Table S1 The x value of the $Ni_2P_{1-x}S_x/Ni@C/G$ determined by EDX.

Figure S4 Raman spectra of $Ni_2P/Ni@C/G$, $Ni_9S_8/Ni@C/G$, and $Ni_2P_{0.75}S_{0.25}/Ni@C/G$, respectively.

Figure S5 (a) SEM images of (a) YS Ni₂P/Ni@C/G, (b) YS Ni₉S₈/Ni@C/G, and (c-f) YS Ni₂P_{1-x}S_x/Ni@C/G, respectively.

Figure S6 TEM images of YS $Ni_2P_{0.75}S_{0.25}/Ni@C/G$.

Figure S7 SEM images of porous (a) NiO, (b) Ni_2P , (c) Ni_9S_8/NiS , and (d) their corresponding XRD patterns, respectively.

Figure S8 (a) XPS full survey spectra of YS NiP_{1-x}S_x/Ni@C/G, Ni₂P/Ni@C/G and Ni₉S₈/Ni@C/G, (b) Ni 2p in YS Ni₂P/Ni@C/G, (c) Ni 2p in YS Ni₉S₈/Ni@C/G, (d) C 1s in YS Ni₂P_{0.75}S_{0.25}/Ni@C/G.

Figure S9 (a) N₂ adsorption-desorption isotherms and (b) pore-size distribution of YS Ni₂P/Ni@C/G, YS Ni₉S₈/Ni@C/G, and YS Ni₂P_{0.75}S_{0.25}/Ni@C/G, respectively.

Figure S10 Surface wetting of H₂O droplet on (a, b) YS Ni₉S₈/Ni@C/G, (c, d) YS Ni₂P/Ni@C/G, and (d, f) YS Ni₂P_{0.75}S_{0.25}/Ni@C/G, respectively.

Figure S11 CV curves of YS $Ni_2P_{0.75}S_{0.25}/Ni@C/G$ at a current density of 0.2 mV S⁻¹.

Figure S12 (a) Cycling stability at 100 mA g^{-1} and (a) rate capabilities of YS $Ni_2P_{0.58}S_{0.42}/Ni@C/G$ and YS $Ni_2P_{0.37}S_{0.53}/Ni@C/G$ for SIBs, respectively.

Figure S13 Cycling stability at 100 mA g^{-1} and rate capabilities of (a, b) Ni₂P, and (c, d) Ni₉S₈/NiS for SIBs, respectively.

Figure S14 (a) Nyquist impedance plots of Ni₂P and Ni₉S₈/NiS after 100 cycles, and (b) the relationship plot between Z' and $\omega^{-1/2}$.

Table S2 Electrochemical impedance parameters of as-obtained Ni-based anodes forSIBs from equivalent circuit fitting of experimental data.

Sample	Cycle number	R _s /Ohm	R _f /Ohm	R _{ct} /Ohm
Ni ₉ S ₈ /NiS	100 th cycle	5.7	109.3	319.0
YS Ni ₉ S ₈ /Ni@C/G	100 th cycle	4.6	28.89	56.6
Ni ₂ P	100 th cycle	5.4	107.8	208.1
YS Ni ₂ P/Ni@C/G	100 th cycle	4.7	25.3	36.9
YS Ni ₂ P _{0.75} S _{0.25} /Ni@C/G	100 th cycle	4.7	24.9	36.0
YS Ni ₂ P _{0.58} S _{0.42} /Ni@C/G	100 th cycle	4.8	26.7	37.6
YS Ni ₂ P _{0.37} S _{0.63} /Ni@C/G	100 th cycle	4.6	26.4	38.3

Equations (1) and (2):

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 c^2 \sigma_w^2} \quad (1) \qquad \qquad Z' = R' + \sigma_w \omega^{-1/2} \quad (2)$$

Where *R* is the gas constant, *T* is the absolute temperature, *A* is the surface area of the electrode, n is the number of transferred electrons per molecule, *F* is the Faraday constant, *c* is the molar concentration of Na⁺ ions, *R'* mainly involves the interface impedance and charge transfer resistances for these electrodes, ω ($\omega = 2 \pi f$) is the angular frequency, and σ_w is the Warburg factor ($Z' \propto \sigma_w \omega^{-1/2}$), respectively.

Figure S15 (a) CV scans of YS $Ni_2P_{0.75}S_{0.25}/Ni@C/G$ at various rates and (b) correspondingly fitted b-value at respective redox peaks for SIBs anode.

Figure S16 SEM images of (a, b) YS $Ni_2P_{0.75}S_{0.25}/Ni@C/G$, (c) YS $Ni_2P_{0.58}S_{0.42}/Ni@C/G$ and (d) YS $Ni_2P_{0.37}S_{0.53}/Ni@C/G$ after 100 cycles at 100 mA g⁻¹, respectively.

Figure S17 (a) GCD curves, and (b) cycle performance at 2 A g^{-1} of the AC cathode for Na-storage.

Figure S18 GDC curves of SICs with different mass ratios (anode: cathode, 1:1, 1:2,

1:3, and 1:4) at a current density of 0.5 A g⁻¹.

Figure S19 (a, c, e) Side-, and (b, d, f) top-views schematic model of the Ni (111), Ni_9S_8 (222), and the Ni_9S_8 (222)-Ni, and (g) DOS curves for Ni (111), Ni_9S_8 (222), and the Ni_9S_8 (222)/Ni.

Figure S20 (a) The first charge-discharge profile and (b) its corresponding ex-situ XRD patterns of YS $Ni_2P_{0.75}S_{0.25}/Ni@C/G$ anode in PIBs at the different voltage platforms.

Table	S3	Performance	comparison	of	between	Ni ₂ P _{0.75} S _{0.25} /Ni@C/G	and	the
reporte	ed ar	node materials f	for PIBs					

Sample	Cycling	Rate capability	Reference
	performance (mAh g ⁻¹)/cycle	(mAh g ⁻¹)/current	
	number, current density (mA g ⁻¹)	density (mA g ⁻¹)	
Ni ₂ P _{0.75} S _{0.25} /Ni@C/G	372/200, 150	238/3200	This work
NiS ₂ @C@C	303/100, 50	151/1610	Adv. Funct. Mater. 2019, 29, 1903454
ZnSe-FeSe ₂ /RGO	363/100, 50		J. Power Sources 2020, 455, 227937
Y-S NiS _x @C	364/200, 100	232/2000	J. Mater. Chem. A, 2019, 7, 18932
mp-Co ₉ S ₈ @C/rGO	408/100, 200	278/2000	Nano Res. 2020, 13, 802-809
Fe-Ni-P hollow	60/700, 200	46/2000	Chem. Eng. J. 2020, 390, 124515
nanoframes			
FeS ₂ @G@CNF	205/100, 200	171/1000	Small 2019, 15, 1804740
Hollow V ₂ O ₃ @C	330/500, 100	125/2000	J. Mater. Chem. A, 2020, 8,
sphere			13261
r-SnP@C	355/300, 100	258/1000	Carbon 2020, 168, 468-474
CoP⊂NPPCS	127/1000, 100	54/2000	Adv. Mater. 2018, 30, 1802310
TiO _x N _y /C	125/100, 200	72/1600	Chem. Eng. J. 2019, 369, 828- 833
N/O Dual-dope hard	305/100, 100	223/2000	Adv. Sci. 2020, 7, 1902547
Carbon-800			
SnO ₂ @CF	399/150, 100	247/2000	Energy Environ. Sci., 2020,13,
	270/100, 100	200/2000	J/1-J/0
NC@CoP/NC	279/100, 100	200/2000	Small 2020, 16, 1906566

Figure S21 (a) CV scans of YS $Ni_2P_{0.75}S_{0.25}/Ni@C/G$ at various rates, and (b) the shaded region shows the CV profile with the capacitive contribution at a scan rate of 0.6 mV s⁻¹ for PIBs anode.

References:

- F. Zou, Y. M. Chen, K. Liu, Z. Yu, W. Liang, S. M. Bhaway, M. Gao and Y. Zhu, ACS Nano, 2016, 10, 377-386.
- 2. H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K. C. Roh and K. Kang, *Adv. Energy Mater.*, 2013, **3**, 1500-1506.
- 3. J. L. Rutao Wang, Peng Zhang, Zongyuan Lin , Xingbin Yan, Adv. Funct. Mater., 2015, 25, 2270–2278.
- 4. D. Vanderbilt, Phys. Rev. B, 1990, 41, 7892–7895.
- 5. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou and K. Burke, *Phys. Rev. Lett.*, 2008, **100**, 136406.
- 6. B. G. Pfrommer, M. Côté, S. G. Louie and M. L. Cohen, J. Comput. Phys., 1997, 131, 233-240.