Electronic Supplementary Information

Mono-faceted WO_{3-x} nanorods *in-situ* hybridized in carbon nanosheets for

ultra-fast/stable sodium-ion storage

Fanyan Zeng^{a,*}, Wanting Cheng^a, Yang Pan^{b,*}, Maohui Yu^a, Yaohui Qu^a, Cailei Yuan^{a,*}

^a Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics,

Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China

^b College of Life Science, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China

*Corresponding authors

E-mail: zfy1012@126.com (F. Y. Zeng); pany05@126.com (Y. Pan); clyuan@jxnu.edu.cn (C.L. Yuan)

Figure S1 XRD patterns of the W-dopamine nanosheets and representative WO₃.

Figure S2 (a-c) SEM and (d-f) TEM images of the W-dopamine nanosheets at different magnifications.

Figure S3 SEM images of the WO_{3-x} NRs/N-CNSs at the different annealing temperatures: (a) 500, (b) 600 and (c) 700 °C.

Figure S4 (a) TEM image of the WO_{3-x} NRs/N-CNSs and (b) the corresponding TEM image in pure carbon sites.

Figure S5 EDX spectrum of the WO_{3-x} NRs/N-CNSs.

Figure S6 (a) N_2 absorption-desorption isotherms and (b) Pore-size distribution curves of the W-dopamine nanosheets and WO_{3-x} NRs/N-CNSs.

Figure S7 XPS survey spectrum of the WO_{3-x} NRs/N-CNSs.

Figure S8 High- (at 10 °C) and low- (at 30 °C) temperature cyclic stabilities of the WO_{3-x} NRs/N-CNSs at 2.0 and 5.0 A g⁻¹.

Figure S9 (a) Ultralong cycling stability of the WO_{3-x} NRs/N-CNSs at the high current rate of 10.0 A g⁻¹, and (b) CVs at 0.3 mV s⁻¹ after the 40000 cycles.

Figure S10 (a) Cycling stabilities of the WO_{3-x} NRs/N-CNSs at the low current rates of 0.5 and 1.0 A g^{-1} , with (b) stable discharge/charge curves (at 0.5 A g^{-1}).

Figure S11 (a-b) *Ex-situ* HR-TEM images of the WO_{3-x} NRs/N-CNSs after 50000 cycles at 30.0 A g⁻¹ (at the charge state of 1.2 V).

Figure S12 (a) Nyquist plots of the WO_{3-x} NRs/N-CNSs (at 500, 600 and 700 °C) with an equivalent circuit model (inset), and (b) the fitting lines between Z' and $\omega^{-1/2}$ after 100 cycles at 30.0 A g⁻¹.

Figure S13 Geometrically stable configuration of Na_2O adsorbed on nonstoichiometric WO_{3-x} (010 or 020) surface (non-defect site): (a) Side- and (b) Top- view.

Equations S1:¹

$$D_{Na^{+}} = \frac{4}{\pi} \left(\frac{V_M}{AFZ_i} \right)^2 \left[\frac{I_0 \left(\frac{dE}{d\delta} \right)}{\left(\frac{dE}{d\sqrt{t}} \right)} \right]^2, t \ll \frac{L^2}{D_{Na^{+}}}$$

(S1)

where D_{Na^+} is the ion diffusion coefficients, V_{M} is the molar volume, A is the contact area of electrode, F is the Faraday constant, Z_i is the valence of substance, I_0 is the applied constant current, E is the electrode voltage, δ is the stoichiometric ratio, t is the time during constant current pulse and L is the thickness of the electrode.

Equations S2 and S3: 2, 3

$$Z' = R_s + R_{ct} + \sigma \omega^{-\frac{1}{2}}$$
(S2)
$$D_{Na^+} = \frac{R^2 T^2}{2A^2 n^2 F^4 C^2 \sigma^2}$$
(S3)

where R_{ct} is the charge-transfer resistance, ω is the angular frequency, D_{Na}^+ is the ion diffusion coefficients, the *R* is the gas constant, *T* is the absolute temperature, *A* is the contact area of electrode, *n* is the transferred charge, *F* is the Faraday constant, *C* is the concentration of Na⁺ and σ is the Warburg impedance.

References:

1 C. J. Wen, B. A. Boukamp, R. A. Huggins and W. Weppner, J. Electrochem. Soc., 1979, 126, 2258.

- 2 N. Takami, J. Electrochem. Soc., 1995, 142, 371.
- 3 C. Ho, J. Electrochem. Soc., 1980, 127, 343.