Composition	The properties of the native skin							
	Strain detection	Antibacteria	UV-sensitive	Optical Variabilit y	Shape customizability	Immune function		
Silver nanowire, PLGA fibers + PVA fibers	4	~	-	-	-	-	[1]	
PAAm + cellulose+ Na ₂ SO ₄	4	-	-	4	-	-	[2]	
PVA/PAMAA + NaCl + glycerol	4	-	-	-	-	-	[3]	
Silver flake, silver plate, and EGaIn as metallic fillers + elastomer	4	-	-	1	-	-	[4]	
PMMA + multiwalled carbon nanotubes (MVVCNTs)	4	-	-	-	~	-	[5]	
PEDOT:PSS + cellulose nanofibril paper	4	-	-	-	4	-	[6]	
Metal oxide nanofiber network + elastomer	4	-	~	-	-	-	[7]	
Graphene + PVA + polydopamine + silver nanopartides	4	~	-	-	-	-	[8]	
Bio- electrochemical liquid bridge (RC- LH1 protein, potassium ferrocyanide, and potassium ferricyanide) + electrodes	1	-	1	-	-	-	[9]	
Silve r+ PVDF- TrFE:ZnO + quantum dots + hole transport layer + ITO/PET	~	-	-	~	-	-	[10]	

Table S1. Comparison of the e-skin properties in this work with those in other publications.

PAAm-XgFe(III,	~	~	~	~	~	~	This work
II)-3							

Supplementary references:

[1] Peng X, Dong K, Ye C, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. SCI ADV 2020;6:a9624.

[2] Chen C, Wang Y, Wu Q, et al. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors. CHEM ENG J 2020;400:125876.

[3] Huang J, Peng S, Gu J, et al. Self-powered integrated system of a strain sensor and flexible allsolid-state supercapacitor by using a high performance ionic organohydrogel. MATER HORIZ 2020;7:2085-2096.

[4] Lee J, Sul H, Jung Y, et al. Thermally Controlled, Active Imperceptible Artificial Skin in Visibleto-Infrared Range. ADV FUNCT MATER 2020;n/a:2003328.

[5] Chen D, Liu Z, Li Y, et al. Unsymmetrical Alveolate PMMA/MWCNT Film as a Piezoresistive E-Skin with Four-Dimensional Resolution and Application for Detecting Motion Direction and Airflow Rate. ACS Appl Mater Interfaces 2020;12:30896-30904.

[6] Ling H, Chen R, Huang Q, et al. Transparent, flexible and recyclable nanopaper-based touch sensors fabricated via inkjet-printing. GREEN CHEM 2020;22:3208-3215.

[7] Wang B, Thukral A, Xie Z, et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. NAT COMMUN 2020;11:2405.

[8] Fan L, Xie J, Zheng Y, et al. Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. ACS Appl Mater Interfaces 2020;12:22225-22236.

[9] Ravi SK, Paul N, Suresh L, et al. Bio-photocapacitive tactile sensors as a touch-to-audio braille reader and solar capacitor. MATER HORIZ 2020;7:866-876.

[10] Hu H, Shen T, Lin T, Chen Y. Interactive Color-Changing Electronic Skin Based on Flexible and Piezoelectrically Tunable Quantum Dots Light-Emitting Diodes. ADV OPT MATER 2020;8:1901715.