Supporting Information

Characteristics of YCoO₃ type Perovskite Oxide and Application as an SOFC Cathode

Takaaki Sakai^{a),b),c)*}, Masako Ogushi^{c)}, Kohei Hosoi^{c)}, Atsushi Inoishi^{d)}, Hidehisa Hagiwara^{c),e)}, Shintaro Ida^{c),e)}, Masatsugu Oishi^{f)}, Tatsumi Ishihara^{c),e)}

^{a)} Global Zero Emission Research Center, National Institute of Advanced Industrial

Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

^{b)} Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

^{c)} Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

^{d)} Department of Advanced Device Materials, Institute for Materials Chemistry and

Engineering, Kyushu University, 6-1 Kasugakouen, Kasuga, Fukuoka 816-8580, Japan

^{e)} International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu

University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

^{f)} Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan

- * Corresponding author: Dr. Takaaki Sakai
- 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- tel: +81-29-861-8212
- e-mail: sakai-takaaki@aist.go.jp

Fig. S1. Gibbs free energy ΔG , of the reaction between $LnCoO_3$ and ZrO_2 as a function of temperature calculated from the thermodynamic database (MALT-2). In this figure, $LnCoO_3$ and ZrO_2 react and form the pyrochlore phase (or $Ln_4Zr_3O_{12}$ phase ¹⁶) when ΔG became negative. Only the La based cobaltite (LaCoO₃) can maintain a positive ΔG up to around 900 °C, which indicates that the current La based cathode is the most stable toward the ZrO₂ electrolyte.

Fig. S2. SEM image of YCO-096 cathode powder after ball-milling with 15 mm milling media at 300 rpm for 1 h.

Fig. S3. Schematic illustration of the experimental apparatus for the SOFC power generation test using the YCO cathode cell.

Fig. S4. XRD pattern of a mixture of $Y_{0.96}CoO_{3-\delta}$ and YSZ-8 heated at 975 °C for 100 h. The weight ratio of the YCO-YSZ mixture was 1:1. (a) XRD pattern from 10° to 80°, (b) magnified pattern from 28° to 32°, and (c) magnified pattern from 35° to 39°.

Fig. S5 Impedance spectra of the YCO cathode measured under OCV or cathodic biased condition. Overall view (a), and magnified spectra around ohmic resistance (b).