Electronic Supplementary Information

Simultaneous phase transformation and doping via a unique photochemical-electrochemical strategy to highly active Fedoped Ni oxyhydroxide oxygen evolution catalyst

Lingya Yi, Yanli Niu, Bomin Feng, Ming Zhao, and Weihua Hu*

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China.

E-mail: whhu@swu.edu.cn

Fig. S1 Schematic depiction of the synthesis of *pc*-NiFe@CC electrocatalyst.

Fig. S2 CV scans of *a*-NiO_x@CC in 5 μ M Fe³⁺ spiked 1.0 M KOH, scan rate: 100 mV s⁻¹.

Fig. S3 SEM images of bare CC. a, low magnification; b, high magnification.

Fig. S4 SEM images of Ni-PDA@CC. a, high magnification; b, low magnification.

Fig. S5 SEM images of *a*-NiO_x@CC. a, high magnification; b, low magnification.

Fig. S6 TEM image of nanosheets ultrasonically peeled from Fe-NiOOH@CC.

Fig. S7 TEM images of ultrasonically peeled a-NiO_x. a, low magnification; b, high magnification.

Fig. S8 OER activity of Fe-NiOOH@CC synthesized with different duration of Ni-PDA deposition.

Fig. S9 OER activity of Fe-NiOOH@CC synthesized with different duration of UV irradiation.

Fig. S10 OER activity of Fe-NiOOH@CC synthesized with different Fe spiking concentration for cycling.

Fig. S11 CV curves of Fe-NiOOH@CC (a), *ec*-NiFe@CC (b), *pc*-NiFe@CC (c) and NiOOH@CC (d) in 1.0 M KOH solution at different scanning rates.

Fig. S12 ECSA-normalized LSV curves of Fe-NiOOH@CC, ec-NiFe@CC, pc-NiFe@CC and NiOOH@CC with iR compensation. The ECSA of catalysts is

calculated from the double-layer capacitance according to equation: $ECSA = \frac{C_{dl}}{C_s},$

where C_{dl} is the double-layer capacitance, estimated by the slope of a linear curve that obtained by plotting the non-Faradaic capacitive current ($\Delta J/2$, i.e. ($J_a - J_c$)/2) against scanning rate; C_s is the specific capacitance of a planar surface. The C_s value is selected as 0.04 mF cm⁻² in present work (see e.g., J. Am. Chem. Soc., 2013, 135, 16977).

Fig. S13 TEM images of Fe-NiOOH@CC after OER electrolysis.

Fig. S14 Ni 2p (a) and Fe 2p (b) XPS spectra of Fe-NiOOH@CC after OER.

Fig. S15 XPS Fe 2p spectra of NiOOH@CC, pc-NiFe@CC and ec-NiFe@CC.

Fig. S16 XRD patterns of NiOOH@CC, pc-NiFe@CC and ec-NiFe@CC.

Fig. S17 LSV curves of Fe-NiOOH@ITO and Fe-NiOOH@FTO at 5 mV s⁻¹ in 1.0 M KOH.

Catalyst	η@10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Stability	Electrolyte	Morphology	Substrate	Ref.
Fe-NiOOH@CC	331	64	150 mA cm ⁻² for 55 h	1.0 M KOH	nanoparticle	CC	This work
r-FeOOH/α-Ni(OH) ₂ /NF	168	51.4	2000 mA cm ⁻² for 10 h	1.0 M KOH	particle	NF ^a	1
NiFe LDH@NiCoP/NF	220	48.6	10 mA cm ⁻² for 100 h	1.0 M KOH	nanosheet on nanowire	NF	2
NiFe LDH/NiTe	228 @50 mA cm ⁻²	51.04	20 mA cm ⁻² for 30 h	1.0 M KOH	nanosheet on nanorod	NF	3
Ni-Fe-OH@Ni ₃ S ₂ /NF	165	93	500 mA cm ⁻² for 50 h	1.0 M KOH	nanosheet	NF	4
NiFe/N-CNT	290	79	5000 cycles	0.1 M KOH (1600 rpm)	nanoparticle	CNT ^b	5

Table S1. OER activity of NiFe-base catalysts in alkaline media reported in recent literature.

CoFe@NiFe-200/NF	190	45.71	36 mA cm ⁻² for 30 h	1.0 M KOH	nanosheet on nanosheet	NF	6
NiFe-LDH/NF	270	67.44	/	1.0 M KOH	nanosheet	NF	6
NiFe LDH	182	34.34	1.7 V for 100 h	1.0 M KOH	nanosheet	NF	7
NiFeRu-LDH	225	32.4	10 mA cm ⁻² for 10 h	1.0 M KOH	nanosheet	NF	8
NiFe-LDH	230	36.2	N.A.	1.0 M KOH	nanosheet	NF	8
MIL-53(FeNi)/NF	233 @50 mA cm ⁻²	31.3	20, 50, 100 mA cm ⁻² for 16000 s, respectively	1.0 M KOH	nanosheet	NF	9
4.3%-strained NiFe MOFs	210 @200 mA cm ⁻²	68	200 mA cm ⁻² for 200 h	0.1 M KOH	nanosheet	NF	10
pristine NiFe MOFs	600 @200 mA cm ⁻²	167	N.A.	0.1 M KOH	nanosheet	NF	10

a-LaNiFe(t-d) hydroxide	189	36	10 mA cm ⁻² for 100 h	1.0 M KOH	nanostructured amorphous	NF	11
ball-milled NiFe-LDH	270	36.2	N.A.	1.0 M KOH	nanosheet	GC °	12
NiFe-NFF	227	38.9	10~20 mA cm ⁻² for 15 h	1.0 M KOH	nanocluster on nanosheet	NFF ^d	13

^a NF: nickel foam, ^b CNT: carbon nanotubes, ^c GC: glassy carbon electrode, ^d NFF: NiFe alloy foam.

References

- 1. X. Cheng, J. Yuan, J. Cao, C. Lei, B. Yang, Z. Li, X. Zhang, C. Yuan, L. Lei and Y. Hou, J. Colloid Interface Sci., 2020, 579, 340-346.
- H. Zhang, X. Li, A. Haehnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg and R. B. Wehrspohn, *Adv. Funct. Mater.*, 2018, 28, 1706847.
- 3. L. Hu, X. Zeng, X. Wei, H. Wang, Y. Wu, W. Gu, L. Shi and C. Zhu, Appl. Catal. B-Environ., 2020, 273, 119014.
- 4. X. Zou, Y. Liu, G. Li, Y. Wu, D. Liu, W. Li, H. Li, D. Wang, Y. Zhang and X. Zou, Adv. Mater., 2017, 29, 1700404.

- 5. H. Lei, Z. Wang, F. Yang, X. Huang, J. Liu, Y. Liang, J. Xie, M. S. Javed, X. Lu, S. Tan and W. Mai, *Nano Energy*, 2020, 68, 104293.
- 6. R. Yang, Y. Zhou, Y. Xing, D. Li, D. Jiang, M. Chen, W. Shi and S. Yuan, Appl. Catal. B-Environ., 2019, 253, 131-139.
- 7. Z. Qiu, C. W. Tai, G. A. Niklasson and T. Edvinsson, *Energy Environ. Sci.*, 2019, 12, 572-581.
- 8. G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen and X. Feng, Adv. Mater., 2018, 30, 1706279.
- 9. F. Sun, G. Wang, Y. Ding, C. Wang, B. Yuan and Y. Lin, Adv. Energy Mater., 2018, 8, 1800584.
- 10. W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang and Q. Liu, *Nat. Energy*, 2019, 4, 115-122.
- 11. G. Chen, Y. Zhu, H. M. Chen, Z. Hu, S. Hung, N. Ma, J. Dai, H. Lin, C. Chen, W. Zhou and Z. Shao, Adv. Mater., 2019, 31, 1900883.
- 12. D. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang, S. Liu, J. Tang, J. Zhang, D. Liu, L. Zheng, Y. Kuang, X. Sun and B. Liu, *Angew. Chem. Int. Ed.*, 2019, 58, 736-740.
- 13. C. Cao, D. Ma, Q. Xu, X. Wu and Q. Zhu, Adv. Funct. Mater., 2019, 29, 1807418.