Supporting Information

Internal Field Engineering of WO₃ by ion channel migration with Enhanced Photocatalytic Oxygen Evolution Ability

Fang F. Wang ^{a*}, Chang D.Chen ^a, Wei Wang ^b, Ming L Kang ^a, Ying Gao ^a, Xue B. Chen ^a, Jing Zhang ^{a*}

^a College of Chemistry, Chemical Engineering and Environmental Engineering,

Liaoning Shihua University, Fushun 113001, Liaoning, China

^b College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China.

*To whom correspondence should be addressed.

E-mail: fionawang@xmu.edu.cn, jingzhang_dicp@live.cn Tel.: +86-24-56863390

Sample Preparation for pristine m- WO₃, T-Na₅W₁₄O₄₄ and T-Na₂W₄O₁₃

• Pristine m-WO₃ was prepared by thermal decomposition method. The white APT powder was calcined at 500°C for 4hours in a static atmosphere of air, and then was rapidly cooled to room temperature.

• Pristine T-Na₅W₁₄O₄₄ and T-Na₂W₄O₁₃ was prepared using a hydrothermal method. In a typical procedure, 9.8955g Na₂WO₄·2H₂O was dissolved in 30ml deionized water. Then, 3mol/L HCl was slowly dropped into the solution with vigorous stirring, until the pH of the mixture was adjusted to 3.0. Finally, the transparent solution was transferred into a 100ml Teflon-lined stainless steel autoclave, and sealed, heated in an oven at 160 °C for 3h. The obtained white powder was washed five times with distilled water, and dried in a vacuum oven at 60 °C for 24h, which then calcined at 400°C and 500°C for two hours to get the pristine T-Na₅W₁₄O₄₄ and T-Na₂W₄O₁₃, respectively.

• Apparent Quantum efficiency (AQE) calculation

The apparent quantum efficiency (AQE) of Na/WO₃-500° for solar water oxidation was evaluated by calculating the percentage of energy conversion of incident photon. The AQE measurement for O₂ evolution is carried out according to a standard experimental procedure. The reaction solution containing the photocatalyst and sacrificial agent was irradiated by monochromatic light (λ =420 nm). The incident light intensity was tested to be 29.00 mW·cm⁻² using a PL-MW2000 light power meter (Beijing Perfectlight Technology Co, LTD.) and the light irradiation area was 19.63 cm². The hole consumption rate can be calculated based on the evolution rate of O_2 in the initial one hour irradiation, which was 41.9umol·h⁻¹. Therefore, the AQE can be estimated according to the following equation:

$$AQE(\%) = \frac{hole \ consumption \ rate}{incident \ photon \ rate} \times 100\%$$

= $\frac{4 \times O_2 generating \ rate}{incident \ photo \ rate} \times 100\%$
= $\frac{4 \times 6.02 \times 10^{23} \times 41.9 \times 10^{-6}}{29.00 \times 10^{-3} \times 19.63 \times 420 \times 3600 \times 10^{-9}} / (6.626 \times 10^{-34} \times 3 \times 10^{8})$

= 2.33%

Figure S1 XRD patterns of different samples prepared by calcination of K/WO₃ at different temperatures, where \blacksquare = hexagonal, O = monoclinic WO₃, \checkmark Hexagonal K_{0.33}W_{0.94}O₃, \star = Hexagonal K₂W₄O₁₃ crystal structure.

Figure S2 Sample pictures of pure WO₃, Na/WO₃, and Na/WO₃-T.

Figure S3 Vis-Raman spectra (Laser line 532nm) of pure phases: h-WO₃, m- WO₃, T-

 $Na_5W_{14}O_{44}$ and $T-Na_2W_4O_{13}$

Figure S4 (a) XRD of prepared T-Na₅W₁₄O₄₄ and T-Na₂W₄O₁₃ using the modified solid state synthesis method in sample preparation section. (b) Mott-Schottky curves of h-WO₃, m-WO₃, pure T-Na₂W₄O₁₃ and pure T-Na₅W₁₄O₄₄, The extrapolation of the C⁻² vs. E curves on the *x* intercepts give the E_{FB} of +0.07eV(vs. NHE) for h-WO₃, +0.04eV for m-WO₃, +0.12 eV for T-Na₂W₄O₁₃, and +0.03 eV for T-Na₅W₁₄O₄₄,

respectively.(c) Mott-Schottky curves of Na/WO₃ (h-WO₃) and Na/WO₃-T, measured in Na₂SO₄ solution (0.5M, pH ca. 7.0). (d)Tauc plot of the h-WO₃, m-WO₃, Pure T-Na₅W₁₄O₄₄ and Pure T-Na₂W₄O₁₃.

Figure S5 Phase angle curves of Na/WO₃-T. Signal in the first or fourth quadrant (- $90^{\circ} \sim +90^{\circ}$) means photoinduced holes transferred to the surface of photocatalysts under the irradiation, in second or third quadrant (+ $90^{\circ} \sim +180^{\circ}$, - $90^{\circ} \sim -180^{\circ}$) photoinduced electrons transfered to surface.

Figure S6 XRD of the photocatalysts after 4 hours' photocatalytic reactions.

Figure S7 Time-resolved photoluminescence spectroscopy for Pure WO₃, Na/WO₃, Na/WO₃, Na/WO₃-470°, and Na/WO₃-800°.

Figure S8 UV-vis DRS of Na/WO₃ and Na/WO₃-T and their absorption edges.