Supporting Information

Internal Field Engineering of $WO₃$ by ion channel migration with Enhanced Photocatalytic Oxygen Evolution Ability

Fang F. Wang ^{a*}, Chang D.Chen^a, Wei Wang ^b, Ming L Kang^a, Ying Gao^a, Xue B. *Chen ^a , Jing Zhang ^a **

^a College of Chemistry, Chemical Engineering and Environmental Engineering,

Liaoning Shihua University, Fushun 113001, Liaoning, China

^b College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China.

*To whom correspondence should be addressed.

E-mail: fionawang@xmu.edu.cn, jingzhang_dicp@live.cn Tel.: +86-24-56863390

Sample Preparation for pristine m- WO3, T-Na5W14O⁴⁴ and T-Na2W4O¹³

Pristine m-WO₃ was prepared by thermal decomposition method. The white APT powder was calcined at 500 °C for 4 hours in a static atmosphere of air, and then was rapidly cooled to room temperature.

Pristine T-Na₅W₁₄O₄₄ and T-Na₂W₄O₁₃ was prepared using a hydrothermal method. In a typical procedure, $9.8955g$ Na₂WO₄ \cdot 2H₂O was dissolved in 30ml deionized water. Then, 3mol/L HCl was slowly dropped into the solution with vigorous stirring, until the pH of the mixture was adjusted to 3.0. Finally, the transparent solution was transferred into a 100ml Teflon-lined stainless steel autoclave, and sealed, heated in an oven at 160 °C for 3h. The obtained white powder was washed five times with distilled water, and dried in a vacuum oven at 60 °C for 24h, which then calcined at 400° C and 500° C for two hours to get the pristine T- $Na₅W₁₄O₄₄$ and T-Na₂W₄O₁₃, respectively.

Apparent Quantum efficiency (AQE) calculation

The apparent quantum efficiency (AQE) of $Na/WO₃$ -500 $^{\circ}$ for solar water oxidation was evaluated by calculating the percentage of energy conversion of incident photon. The AQE measurement for O_2 evolution is carried out according to a standard experimental procedure. The reaction solution containing the photocatalyst and sacrificial agent was irradiated by monochromatic light $(\lambda=420 \text{ nm})$. The incident light intensity was tested to be 29.00 mW・cm−2 using a PL-MW2000 light power meter (Beijing Perfectlight Technology Co, LTD.) and the light irradiation area was 19.63 cm² . The hole consumption rate can be calculated based on the evolution rate of

 O_2 in the initial one hour irradiation, which was 41.9umol·h⁻¹. Therefore, the AQE can be estimated according to the following equation:

$$
AQE(\%) = \frac{hole\ consumption\ rate}{incident\ photon\ rate} \times 100\%
$$

=
$$
\frac{4 \times O_2 \text{generating rate}}{\text{incident photo rate}} \times 100\%
$$

=
$$
\frac{4 \times 6.02 \times 10^{23} \times 41.9 \times 10^{-6}}{29.00 \times 10^{-3} \times 19.63 \times 420 \times 3600 \times 10^{-9}} / 6.626 \times 10^{-34} \times 3 \times 10^8
$$

 $= 2.33\%$

Figure S1 XRD patterns of different samples prepared by calcination of $K/WO₃$ at different temperatures, where $\blacksquare =$ hexagonal, $\blacksquare =$ monoclinic WO₃, \blacktriangledown Hexagonal $K_{0.33}W_{0.94}O_3$, \star = Hexagonal $K_2W_4O_{13}$ crystal structure.

Figure S2 Sample pictures of pure WO₃, Na/WO₃, and Na/WO₃-T.

Figure S3 Vis-Raman spectra (Laser line 532nm) of pure phases: h-WO₃, m-WO₃, T-

 $Na_5W_{14}O_{44}$ and T-Na₂W₄O₁₃

Figure S4 (a) XRD of prepared T-Na₅W₁₄O₄₄ and T-Na₂W₄O₁₃ using the modified solid state synthesis method in sample preparation section. (b) Mott-Schottky curves of h-WO₃, m-WO₃, pure T-Na₂W₄O₁₃ and pure T-Na₅W₁₄O₄₄, The extrapolation of the C⁻² *vs.* E curves on the *x* intercepts give the E_{FB} of +0.07eV(*vs.* NHE) for h-WO₃, +0.04eV for m-WO₃, +0.12 eV for T-Na₂W₄O₁₃, and +0.03 eV for T-Na₅W₁₄O₄₄,

respectively.(c) Mott-Schottky curves of $Na/WO₃$ (h-WO₃) and Na/WO₃-T, measured in Na₂SO₄ solution (0.5M, pH ca. 7.0). (d)Tauc plot of the h-WO₃, m-WO₃, Pure T- $Na₅W₁₄O₄₄$ and Pure T-Na₂W₄O₁₃.

Figure S5 Phase angle curves of $Na/WO₃-T$. Signal in the first or fourth quadrant (- 90° \sim +90 $^{\circ}$) means photoinduced holes transferred to the surface of photocatalysts under the irradiation, in second or third quadrant $(+90^{\circ}$ ~+180°, -90° ~-180°) photoinduced electrons transfered to surface.

Figure S6 XRD of the photocatalysts after 4 hours' photocatalytic reactions.

Figure S7 Time-resolved photoluminescence spectroscopy for Pure WO₃, Na/WO₃, $Na/WO₃ - 470^o$, and $Na/WO₃ - 800^o$.

Figure S8 UV-vis DRS of Na/WO₃ and Na/WO₃-T and their absorption edges.