Supporting Information

Giant High-temperature Piezoelectricity in Perovskite oxides for Vibration Energy Harvesting

Haiyan Zhao,^{a,b} Yudong Hou,^{a,*} Xiaole Yu,^a Mupeng Zheng,^a Mankang Zhu^a

^aFaculty of Materials and Manufacturing, Key Laboratory of Advanced Functional

Materials, Education Ministry of China, Beijing University of Technology, Beijing

100124, China

^bTangshan Normal University, Tangshan 063000, China

Fig. S1. Variation of the d_{33} of 1-635PT sample as a function of annealing temperature.

^{*} Corresponding author. E-mail: <u>vdhou@bjut.edu.cn</u>

Fig. S2. The open output voltage as a function of temperature for (a) BS-PT64 harvester¹ and (b) PIN-BS-PT harvester at resonate frequencies under 1*g* acceleration.

Table S1. Curie temperature and room temperature electrical properties of *z*BS-*x*PT-*y*BZH ceramics.

Serie	x	$T_{\rm c}(^{\rm o}{\rm C})$	<i>d</i> ₃₃ (pC/N)	<i>ɛ</i> r	$tan\delta$
	0.620	418	280	1024	0.026
	0.625	424	366	1260	0.029
	0.630	430	457	1483	0.035
<i>y</i> = 0.01	0.635	431	461	1969	0.027
	0.640	432	356	1778	0.021
	0.645	433	299	1523	0.019
	0.650	442	265	1314	0.017
	0.620	422	383	1273	0.038
	0.625	426	456	1651	0.038
y = 0.02	0.630	431	377	1602	0.027
	0.635	432	310	1315	0.023
	0.640	432	297	1052	0.024
	0.615	416	363	1267	0.036
	0.620	417	421	1678	0.035
y = 0.03	0.625	419	369	1755	0.036
	0.630	423	335	1594	0.034
	0.635	426	306	1482	0.029

Composition	$T_1(^{\circ}\mathrm{C})$	<i>d</i> ₃₃₋₁ (pC/N)	$T_2(^{\circ}\mathrm{C})$	d ₃₃₋₂ (pC/N)	$T_3(^{\mathrm{o}}\mathrm{C})$	d ₃₃₋₃ (pC/N)	Methods	Ref.
PZT5	~220	~700	_	_	_	_	quasi-static method	2
PZT8	~275	340	_	—	—	_	quasi-static method	3
PZT5	250	577	_	—	—	_	quasi-static method	3
PZN-PZT	200	385	350	43	—	_	quasi-static method	4
BYPT-PZ-La	~325	~325	_	—	—	_	quasi-static method	2
KNNL <i>x-</i> BZ- BNT	150	~270	_	_	_	_	quasi-static method	5
NBT-BT	90	129	_	—	—	_	quasi-static method	4
NBT-Fe	180	133	_	_	—	_	laser vibrometer	6
BCZT	45	332	100	88	—	_	quasi-static method	4
BZT-50BCT	25	620	70	620	_	_	quasi-static method	7
PN-La-Mn	~300	~100	_	_	_	_	quasi-static method	2
BMT-40PT	~350	370	_	_	_	_	laser vibrometer	8
BF-41PT	400	~150	_	_	_	_	laser vibrometer	8
BS-PT64	20	380	220	480	—	_	quasi-static method	7
BS-PT	~350	~800	_	—	—	_	quasi-static method	2
BS-PT63	~380	780	_	—	—	_	laser vibrometer	8
BSPTSingle crystal	400	1300	_	_	_	_	resonance method	9
BS-PT64	25	484	200	556	400	405	quasi-static method	
BS-PT-PIN	25	492	200	675	400	26	quasi-static method	I his
BZH-BS-PT	25	461	200	612	400	726	quasi-static method	WUIK

Table S2. The d_{33} values of piezoceramics at different test temperatures (*T*) by *in situ* method.

The d_{33-1} , d_{33-2} and d_{33-3} in the table correspond to the d_{33} values of the materials at three different test temperatures

 T_1 , T_2 and T_3 , respectively.

The unit of d_{33} value measured by laser vibrometer is pm/V.

Samples	Т	Phase	Lattice parameters				Refined factors		
	(°C)		<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β (°)	$R_{wp}(\%)$	$R_{\rm p}(\%)$	χ^2
BS-PT64	200	P4mm	4.0037	4.0037	4.0745	90	6.32	4.58	3.26
	200	R3mr	4.0380	4.0380	4.0380	90.0725			
BS-PT64 4	400	P4mm	4.0191	0.0000	4.0631	90	7.15	5.04	3.70
	400	R3mr	4.0312	0.0000	0.0000	90.0466			
PIN-BS-PT 2	200	P4mm	4.0100	4.0100	4.0666	90	7.59	5.35	3.96
	200	R3mr	4.0359	4.0359	4.0359	89.9026			
PIN-BS-PT	400	P4mm	4.0231	4.0231	4.0584	90	10.44	6.81	5.43
	400	R3mr	4.0287	4.0287	4.0287	90.0298			
BS-PT-	200	P4mm	4.0035	4.0035	4.0747	90	8.30	5.67	4.20
BZH		R3mr	4.0400	4.0400	4.0400	89.8344			
BS-PT-	400	P4mm	4.0142	4.0142	4.0542	90	0.01	(20	4 4 1
BZH		R3mr	4.0302	4.0302	4.0302	89.9337	8.81	6.20	4.41

Table S3. Rietveld refinement parameters of poled ceramics *in situ* measured at different temperatures (T) XRD.

- 1 H. Zhao, Y. Hou, X. Yu, J. Fu, M. Zheng and M. Zhu, J. Am. Ceram. Soc., 2019, 102, 5316-5327.
- 2 C. Huang, K. Cai, Y. Wang, Y. Bai and D. Guo, J. Mater. Chem. C, 2018, 6, 1433-1444.
- 3 F. Li, Z. Xu, X. Wei and X. Yao, *J Electroceram*, 2009, **24**, 294-299.
- 4 H. Zhao, Y. Hou, M. Zheng, X. Yu, X. Yan, L. Li and M. Zhu, Mater. Lett. , 2019, 236, 633-636.
- 5 Q. Liu, J. Li, L. Zhao, Y. Zhang, J. Gao, W. Sun, K. Wang and L. Li, *J. Mater. Chem. C*, 2018, **6**, 1116-1125.
- 6 M. Davies, E. Aksel and J. L. Jones, J. Am. Ceram. Soc., 2011, 94, 1314-1316.
- 7 M. Fang, S. Rajput, Z. Dai, Y. Ji, Y. Hao and X. Ren, Acta Mater. , 2019, 169, 155-161.
- 8 T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner and J. Rödel, J. Am. Ceram. Soc., 2012, 95, 711-715.
- 9 S. Zhang, C. A. Randall and T. R. Shrout, *Solid State Commun.*, 2004, **131**, 41-45.