Supplementary Information

Reduction tuning of ultrathin carbon shell armour covering IrP₂ for accelerated hydrogen evolution kinetics with Pt-like performance

Wen-Li Yu^a, Jing-Qi Chi^{*b}, Bin Dong^{*a}

a College of Science, China University of Petroleum (East China), Qingdao 266580, PR China

b Key Laboratory of Eco-Chemical Engineering, Taishan Scholar Advantage and Characteristic

Discipline Team of Eco Chemical Process and Technology, College of Chemical Engineering,

Qingdao University of Science and Technology, Qingdao 266042, PR China

* Corresponding Authors.

Email: chijingqi@qust.edu.cn (J.Q. Chi), dongbin@upc.edu.cn (B. Dong)

Fig. S1 (a) SEM and (b) TEM image of NC.

Fig. S2 (a) SEM and (b) TEM image of NPC.

Fig. S3 (a) SEM and (b) TEM image of Ir@NC.

Fig. S4 SEM image of IrP₂ NPs.

Fig. S5 XRD patterns of (a) NPC, (b) Ir@NC, and (c) IrP₂ NPs.

Fig. S6 N₂ sorption isotherm and pore size distribution of (a) NC, (b) NPC, and (c)

Ir@NC.

Fig. S7 (a) N 1s and (b) C 1s XPS spectrum of Ir@NC.

Fig. S8 (a) N 1s and (b) C 1s XPS spectrum of NPC.

Fig. S9 HER polarization curves of IrP_2/NPC before and after 1000 CV cycles from -

0.2 to 0.1 V (vs. RHE) in 0.5 M $\rm H_2SO_4.$

Fig. S10 (a) SEM and (b) TEM images of $IrP_2@NPC$ after stability test in 0.5 M H_2SO_4 .

Fig. S11 (a) Nyquist plots of NC, NPC, Ir@NC, IrP₂/NPC, and IrP₂@NPC nanoshells. (b) CV scans of double-layer capacitance measurement of IrP₂@NPC nanoshells at different scanning rates in 1.0 M KOH. (c) Double-layer capacitances of these catalysts.

Fig. S12 HER polarization curves of IrP2/NPC before and after 1000 CV cycles from

-0.2 to 0.1 V (vs. RHE) in 1.0 M KOH.

Fig. S13 HER polarization curves of Pt/C before and after 1000 CV cycles from -0.2

to 0.1 V (vs. RHE) in 1.0 M KOH.

Fig. S14 (a) SEM and (b) TEM images of $IrP_2@NPC$ after stability test in 1.0 M KOH.

Fig. S15 (a) Nyquist plots of NC, NPC, Ir@NC, IrP₂/NPC, and IrP₂@NPC nanoshells.
(b) CV scans of double-layer capacitance measurement of IrP₂@NPC nanoshells at different scanning rates in 1.0 M PBS. (c) Double-layer capacitances of these catalysts.

Fig. S16 HER polarization curves of Pt/C before and after 1000 CV cycles from -0.2

to 0.1 V (vs. RHE) in 1.0 M PBS.

Fig. S17 HER polarization curves of IrP2/NPC before and after 1000 CV cycles from

-0.2 to 0.1 V (vs. RHE) in 1.0 M PBS.

Fig. S18 (a) SEM and (b) TEM images of $IrP_2@NPC$ after stability test in 1.0 M PBS.

Fig. S19 (a) Nyquist plots and (b) C_{dl} of IrP₂@NPC series samples in 0.5 M H₂SO₄.

Fig. S20 (a) Nyquist plots and (b) C_{dl} of IrP₂@NPC series samples in 1.0 M KOH.

Fig. S21 (a) Nyquist plots and (b) C_{dl} of IrP₂@NPC series samples in 1.0 M PBS.

Samples	Atomic content (at. %)						
	Ir	Р	С	N	0		
IrP ₂ @NPC (0.5 g)	1.27	7.05	71.1	2.89	17.69		
IrP ₂ @NPC (1.0 g)	1.70	10.86	69.92	2.53	14.99		
IrP ₂ @NPC (1.5 g)	1.65	13.41	59.67	2.34	22.93		
IrP ₂ @NPC (2.0 g)	1.12	14.97	61.82	2.19	19.90		

Table S1. Atomic content of Ir, P, C, N, and O estimated by EDX measurements for

IrP₂@NPC with varied P content.

Electrocatalysts	<i>j</i> (mA cm ⁻²)	η (mV)	b (mV dec ⁻¹)	Electrolyte solution	Refs.
	10	32	37	0.5 M H ₂ SO ₄	
IrP ₂ @NPC	10	42	56	1.0 M KOH	This work
	10	90	87	1.0 M PBS	
	10	38	38	0.5 M H ₂ SO ₄	
RuP ₂ @NPC	10	52	69	1.0 M KOH	1
	10	57	87	1.0 M PBS	
	10	51	46	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	
RuP _x @NPC	10	74	70	1.0 M KOH	2
	10	110	59	1.0 M PBS	
	10	19	37	0.5 M H ₂ SO ₄	
RuP(L-RP)	10	18	34	1.0 M KOH	3
	10	95	54	1.0 M PBS	
IrP ₂ @NC	10	8	28	0.5 M H ₂ SO ₄	4
	10	28	50	1.0 M KOH	
	10	130	69	0.5 M H ₂ SO ₄	
WP NAs/CC	10	150	102	1.0 M KOH	5
	10	200	125	1.0 M PBS	
WP ₂ NPs/W	10	143	66	0.5 M H ₂ SO ₄	6

Table S2. Comparison of HER activity between $IrP_2@NPC$ and recently reportedtransition metal phosphides electrocatalysts in a wide pH range.

	10	214	92	1.0 M KOH	
	10	201	95	1.0 M PBS	
	10	58	63.6	0.5 M H ₂ SO ₄	
MoP ₂ NS/CC	10	67	70	1.0 M KOH	7
	10	85	98.3	1.0 M PBS	
	10	124	58	0.5 M H ₂ SO ₄	
MoP NA/CC	10	80	83	1.0 M KOH	8
	10	187	94	1.0 M PBS	
	10	115	65	0.5 M H ₂ SO ₄	
MoP NPs@NC	10	80	59	1.0 M KOH	9
	10	136	71	1.0 M PBS	
	10	67	51	0.5 M H ₂ SO ₄	
CoP/CC	10	209	129	1.0 M KOH	10
	2	65	93	1.0 M PBS	
	20	95	65	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	
np-CoP NWs/Ti	20	150	71	1.0 M KOH	11
	10	178	125	1.0 M PBS	
	10	87	46	0.5 M H ₂ SO ₄	
CoP@BCN	10	215	52	1.0 M KOH	12
	10	122	59	1.0 M PBS	

Samples	0.5 M H ₂ SO ₄		1.0 M KOH		1.0 M PBS	
	R_{s}/Ω	R_{ct}/Ω	R_{s}/Ω	$R_{ct}\!/\!\Omega$	R_s/Ω	R_{ct}/Ω
NC	6.05	195380	8.5	942570	12.67	39147
NPC	7.4	27519	7.794	605480	12.75	12238
Ir@NC	5.48	34.16	6.6	86.34	10.46	600.7
IrP ₂ /NPC	6.92	13872	6.238	37529	15.47	5528
IrP ₂ @NPC	5.79	30	6.19	28.5	13.15	56.5

Table S3 Elemental values of fitted equivalent circuit resistances of NC, NPC, Ir@NC, IrP₂/NPC, and IrP₂@NPC in 0.5 M H₂SO₄, 1.0 M KOH, and 1.0 M PBS.

Samples	0.5 M H ₂ SO ₄		1.0 M KOH		1.0 M PBS	
	R_s/Ω	$R_{ct}\!/\!\Omega$	R_s/Ω	$R_{ct}\!/\Omega$	R_s/Ω	$R_{ct}\!/\Omega$
IrP ₂ @NPC (0.5 g)	6.5	42.93	6.4	129.4	12.27	167.8
IrP ₂ @NPC (1.0 g)	5.8	38.71	7.63	30.69	13.33	123.3
IrP ₂ @NPC (1.5 g)	5.79	30	6.19	28.5	13.15	56.5
IrP ₂ @NPC (2.0 g)	5.46	426.7	6.9	229.8	12.35	285.8

Table S4 Elemental values of fitted equivalent circuit resistances of $IrP_2@NPC$ with various P amount in 0.5 M H₂SO₄, 1.0 M KOH, and 1.0 M PBS.

References

- 1 Z. Pu, I. S. Amiinu, Z. Kou, W. Li and S. Mu, Angew. Chem. Int. Ed., 2017, 56, 11559-11564.
- 2 J. Chi, W. Gao, J. Lin, B. Dong, K. Yan, J. Qin, B. Liu, Y. Chai and C. Liu, *ChemSusChem*, 2018, **11**, 743-752.
- 3 J. Yu, Y. Guo, S. She, S. Miao, M. Ni, W. Zhou, M. Liu and Z. Shao, *Adv. Mater.*, 2018, **30**, 1800047.
- 4 Z. Pu, J. Zhao, I. S. Amiinu, W. Li, M. Wang, D. He and S. Mu, *Energy Environ*. *Sci.*, 2019, **12**, 952-957.
- 5 Z. Pu, Q. Liu, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 21874-21879.
- 6 Z. Pu, I. S. Amiinu and S. Mu, Energy Technol., 2016, 4, 1030-1034.
- 7 W. Zhu, C. Tang, D. Liu, J. Wang, A. M. Asiri and X. Sun, *J. Mater. Chem. A*, 2016,
 4, 7169-7173.
- 8 Z. Pu, S. Wei, Z. Chen and S. Mu, Appl. Catal. B: Environ. 2016, 196, 193-198.
- 9 Z. Pu, I. S. Amiinu, X. Liu, M. Wang and S. Mu, Nanoscale, 2016, 8, 17256-17261.
- 10 J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 11 S. Gu, H. Du, A. M. Asiri, X. Sun and C. M. Li, *Phys. Chem. Chem. Phys.*, 2014, 16, 16909-16913.
- 12 H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao, Q. Wang and R. Zou, Adv. Energy Mater., 2017, 7, 1601671.