Supporting Information:

Rare Earth Metal La-doped induced Electrochemical Evolution of LiV₃O₈ with

Oxygen Vacancy towards High Energy- storage Capacity

Peng Ge^a, Shaohui Yuan^a, Wenqing Zhao^a, Limin Zhang^a, Yue Yang^a, Lingling Xie^{c,d}, Limin Zhu, *^{b,d} and Xiaoyu Cao*^{b,d}

^aSchool of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China. ^bSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR Chinae. ^cSchool of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, PR China ^dKey Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, Henan University of Technology, Zhengzhou 450001, PR China

*Corresponding authors: Prof. Dr Xiaoyu Cao Fax: +86-731-88879616 Tel: +86-731-88879616

E-mail: gp-gepeng@csu.edu.cn, caoxy@haut.edu.cn

Fig. S1 The particles size distribution of LL-2 and LL-P

Fig. S2 The kinetic analysis of V_2O_5 : CV curves at 0.5 mV s⁻¹, 0.8mV s⁻¹, 1.0 mV s⁻¹; the log(Ip) vs. log(v) (b), the capacity contribution of capacitive-controlled (pink) and diffusion contribution (blue) (c), the pesudo-capacitive contributions at different scan rates.

Fig. S3 The TEM images of LL-2 after 50 cycles.