Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information (SI)

H4,4,4-graphyne with double Dirac points as high-efficiency bifunctional

electrocatalysts for water splitting

Haona Zhang, Wei Wei,* Shuhua Wang, Hao Wang, Baibiao Huang, and Ying Dai*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University,

Jinan 250100, China

* Corresponding authors: weiw@sdu.edu.cn, daiy60@sdu.edu.cn

Table S1 Calculated energy of single TM atom (E_{TM}), and the unit is eV.

TM	Sc	Ti	Mn	Fe	Co	Ni	Pd	Ir	Pt
$E_{\rm TM}$	-2.08	-2.05	-5.16	-2.96	-1.66	-0.69	-1.48	-1.47	-0.62

Table S2 Calculated structural parameters of H4,4,4-GY: lattice constant, bond length l_1 , l_2 , l_3 and l_4 , the unit is Å.

	a (Å)	l_1	l_2	l_3	l_4
H4,4,4-graphyne	11.82	1.247	1.351	1.453	1.489

Table S3 Geometry coordinates of H4,4,4-GY unit cell.

	x	у	Ζ
C1	0.4498080594913604	0.2776521240056888	0.500000002002796
C2	0.7223457607876440	0.5501917866205626	0.4999999997521376
C3	0.5501918687566763	0.7223490392824031	0.4999999998362595
C4	0.2776493357252811	0.4498070415013354	0.500000002251881
C5	0.4725260261095471	0.4015497774807891	0.500000006507673
C6	0.5984467891407294	0.5274714884365177	0.4999999993096790
C7	0.5274684115093161	0.5984494527829730	0.4999999993661225
C8	0.4015480188996772	0.4725275926465286	0.500000006311618
С9	0.4498084125337444	0.1721344007632919	0.4999999998397184
C10	0.8278627770641404	0.5501905885519126	0.500000001945941
C11	0.5501914465550511	0.8278665334369966	0.500000001456874
C12	0.1721334659034351	0.4498084308991612	0.4999999997954062
C13	0.4725688394477252	0.0709890304923592	0.4999999997405423
C14	0.9290085798887817	0.5274313114199366	0.500000002301028
C15	0.5274310718434376	0.9290116358972150	0.500000002362344

C16	0.0709876242390127	0.4725692154635029	0.4999999998148684
C17	0.9290409176543298	0.4015352244210509	0.500000001763447
C18	0.4015348151832717	0.9290414319062611	0.500000001411027
C19	0.0709573600485594	0.5984650993466738	0.4999999998418171
C20	0.5984653271793091	0.0709587278383544	0.4999999998344000
C21	0.8279243046676785	0.2775968888065787	0.4999999998832971
C22	0.2775969665094481	0.8279244658454973	0.4999999999113018
C23	0.1720751815149288	0.7224032801241296	0.500000001307827
C24	0.7224033818786912	0.1720754394808605	0.500000001122042

Figure S1. Optimized adsorption configuration of (a) Sc, (b) Ti, (c) Mn, (d) Fe, (e) Co, (f) Ni, (g) Pd, (h) Ir, and (i) Pt supported H4,4,4-GY.

Figure S2. Diffusion pathway and energy barrier for single Co atom on H4,4,4-GY.

Figure S3. Spin-polarized band structure of (a) Sc@H4,4,4-GY, (b) Mn@H4,4,4-GY, (c) Fe@H4,4,4-GY, (d) Co@H4,4,4-GY, (e) Ni@H4,4,4-GY, (f) Ir@H4,4,4-GY, (g) Pt@H4,4,4-GY, and (h) $Co_2@H4,4,4-GY$, the Fermi level is set to zero.

Figure S4. AIMD simulation results for (a) Co@H4,4,4-GY, (b) Co₂@H4,4,4-GY, (c) Ni@H4,4,4-GY, and (d) Pt@H4,4,4-GY at 500 K lasting for 5 ps. Insets are snapshots of the final structures of TM@H4,4,4-GY.

Figure S5. *d* band center of TM atoms supported on H4,4,4-GY, indicated by the red lines. The Fermi level is marked by brown dotted lines.