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Figure S1. Wide-scan XPS survey of α-Fe2O3@TNO nanofibers and TNO nanofibers.
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Figure S2. TGA curves of (a) TNO and (b) α-Fe2O3@TNO nanofibers.



4

Figure S3. Nitrogen sorption isotherm of the α-Fe2O3@TNO nanofibers.
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Figure S4. CV curves of (a) α-Fe2O3@TNO, (b) TNO, and (c) α-Fe2O3 electrodes at a 

scan rate of 0.1 mV s−1 measured in the voltage range of 0.01-3.0 V for the initial 5 

cycles.

In the cathodic and anodic sweeps of α-Fe2O3@TNO (Fig. S2a), the peak couples at 

1.53/1.72 V, 1.83/2.06 V, and 0.83/1.05 V can be attributed to the valence variations 

of Nb5+/Nb4+, Ti4+/Ti3+, and Nb4+/Nb3+ redox couples due to the insertion and 

extraction of Li+ in TNO (Fig. S2b).1 Moreover, the sharp peak at 0.83 V also 

corresponds to the Fe0/Fe3+ (Fe2+) redox couples, originating from the phase transition 

from α-Fe2O3 to LixFe2O3, subsequently to cubic Li2Fe2O3, and finally to the complete 

reduction to Fe0 and then in reverse.2 The plateau voltage for the α-Fe2O3@TNO 

nanofibers is higher than that for the α-Fe2O3 nanoparticles in Fig. S2c, where a clear 

decrease from 0.63 to 0.58 V is observed after only 5 cycles, indicating the greatly 

improved conductivity and kinetics of α-Fe2O3 in the composite nanofibers.3 

Moreover, the intensity and peak positions for the α-Fe2O3@TNO nanofibers only 

showed slight changes within the initial 5 cycles, signifying the good stability and 

reversibility of the electrochemical reactions in the composite.
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Figure S5. Discharge/charge curves of α-Fe2O3@TNO and TNO for the first cycle at 

0.1 A g−1 from 0.01-3.0 V.

The discharge curve of α-Fe2O3@TNO can be divided into four plateau regions: (1) 

between 2.0 and 1.7 V, (2) at ≈1.6 V, (3) between 1.2 and 0.7 V, and (4) a further 

sloping region down to 0.01 V, representing different stages upon Li+ insertion. 

Typically, the plateau between 1.2 and 0.7 V corresponds to the lithiation of α-Fe2O3. 

In contrast, the TNO electrode displays only three discharge plateau regions with a 

generally constant decline below ≈1.5 V in the absence of α-Fe2O3. These results are 

consistent with the CV analysis in Fig. S2.
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Figure S6. TEM image of α-Fe2O3@TNO nanofiber after 500 cycles.
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Figure S7. SEM images of (a) α-Fe2O3@TNO electrode after 50, 200, and 500 cycles 

and (b) HRTEM image of α-Fe2O3@TNO nanofiber after 500 cycles.
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Figure S8. XRD patterns of α-Fe2O3@TNO electrode after 20, 100, 200, and 500 

cycles.
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Figure S9. Fitted Nyquist plots of α-Fe2O3@TNO electrode before and after rate 

capability test.

Each plot consists of semicircles in the high-medium-frequency region (Rs and the 

Rct/CPE pair) and one slope in the low-frequency region (Zw), representing the 

interfacial resistance/charge-transfer resistance and Li+ diffusion in the bulk particle, 

respectively.4 The fitted resistance values for α-Fe2O3@TNO electrode before and 

after the rate capability test were 25.8 and 44.5 Ω. This indicates a faster 

electrochemical kinetics after the activation of the α-Fe2O3@TNO electrode through 

the rate capability test.5
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Figure S10. (a) CV curves of TNO electrode at scan rates from 0.1 to 1.0 mV s−1 and 

(b) logarithmic relationship between the peak current and scan rate, (c) CV curves 

with the separation between total current (red region) and capacitive current (shaded 

region) at a scan rate of 1.0 mV s−1, and (d) normalized contribution ratio of 

capacitive capacity at different scan rates.
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Figure S11. (a) CV curves of α-Fe2O3 electrode at scan rates from 0.1 to 1.0 mV s−1 

and (b) logarithmic relationship between the peak current and scan rate, (c) CV curves 

with the separation between total current (red region) and capacitive current (shaded 

region) at a scan rate of 1.0 mV s−1, and (d) normalized contribution ratio of 

capacitive capacity at different scan rates.
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Figure S12. (a) Discharge/charge curves and (b) rate performance of 

Fe2O3@TNO/SSE/LFP SSB pouch full cell at current densities between 0.1 and 1.0 A 

g−1 and (c) its long-term cycling performance at 0.1 A g−1.
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Table S1. Electrochemical properties of representative TNO-based anodes reported 
recently in comparison with this work.
Materials Specific 

current 
(mA g-1)

Cycle 
number

Retained 
specific 
capacity 

(mAh g-1)

Capacity 
retention

Fading 
rate (per 
cycle)

Ref.

Porous TNO 388 1000 ~190 84.0% 0.016% 6

Porous TNO nanotubes 388 700 ~220 88.0% 0.017% 7

TNO/Graphene fibers 500 100 195 ~76.0% 0.240% 1

TNO/Graphene 388 300 200 72.7% 0.091% 8

Hollow TNO@C spheres 97 500 225 75.0% 0.050% 9

TNO hollow nanofiber 155 150 210 70.0% 0.200% 10

Nb2O5/TNO spheres 388 100 247 89.8% 0.102% 11

Mo-doped TNO 194 10 ~300 N/A N/A 12

Hierarchical MoS2/TNO 
hetero-nanostructure

1000 200 740 91.6% 0.042% 13

α-Fe2O3@TNO
500
100

500
80

423
611

79.2%
97.6%

0.042%
0.028%

This 
work
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