Supporting information

Iron Oxide Encapsulated Titanium Niobate Nanotubes as High-Performance Lithium-Free Anode for Solid-State Batteries

Wei Wu,^{#1,2} Wang Lin, ^{#1} Hongjiang Chen, ¹ Keyan Wei, ¹ Zhitong Li, ¹ Haitao Yang, ¹ Mingxian Liu, ¹ Huaicheng Xiang¹, Libo Deng² and Lei Yao*¹

¹ Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China

² College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China

[#] These authors (W. Wu and W. Lin) contributed equally to this work.

* Corresponding author:

E-mail address: lyao@szu.edu.cn (L. Yao)

Figure S1. Wide-scan XPS survey of α -Fe₂O₃@TNO nanofibers and TNO nanofibers.

Figure S2. TGA curves of (a) TNO and (b) α-Fe₂O₃@TNO nanofibers.

Figure S3. Nitrogen sorption isotherm of the α -Fe₂O₃@TNO nanofibers.

Figure S4. CV curves of (a) α -Fe₂O₃@TNO, (b) TNO, and (c) α -Fe₂O₃ electrodes at a scan rate of 0.1 mV s⁻¹ measured in the voltage range of 0.01-3.0 V for the initial 5 cycles.

In the cathodic and anodic sweeps of α -Fe₂O₃@TNO (Fig. S2a), the peak couples at 1.53/1.72 V, 1.83/2.06 V, and 0.83/1.05 V can be attributed to the valence variations of Nb⁵⁺/Nb⁴⁺, Ti⁴⁺/Ti³⁺, and Nb⁴⁺/Nb³⁺ redox couples due to the insertion and extraction of Li⁺ in TNO (Fig. S2b).¹ Moreover, the sharp peak at 0.83 V also corresponds to the Fe⁰/Fe³⁺ (Fe²⁺) redox couples, originating from the phase transition from α -Fe₂O₃ to Li_xFe₂O₃, subsequently to cubic Li₂Fe₂O₃, and finally to the complete reduction to Fe⁰ and then in reverse.² The plateau voltage for the α -Fe₂O₃@TNO nanofibers is higher than that for the α -Fe₂O₃ nanoparticles in Fig. S2c, where a clear decrease from 0.63 to 0.58 V is observed after only 5 cycles, indicating the greatly improved conductivity and kinetics of α -Fe₂O₃ in the composite nanofibers.³ Moreover, the intensity and peak positions for the α -Fe₂O₃@TNO nanofibers only showed slight changes within the initial 5 cycles, signifying the good stability and reversibility of the electrochemical reactions in the composite.

Figure S5. Discharge/charge curves of α -Fe₂O₃@TNO and TNO for the first cycle at 0.1 A g⁻¹ from 0.01-3.0 V.

The discharge curve of α -Fe₂O₃@TNO can be divided into four plateau regions: (1) between 2.0 and 1.7 V, (2) at \approx 1.6 V, (3) between 1.2 and 0.7 V, and (4) a further sloping region down to 0.01 V, representing different stages upon Li⁺ insertion. Typically, the plateau between 1.2 and 0.7 V corresponds to the lithiation of α -Fe₂O₃. In contrast, the TNO electrode displays only three discharge plateau regions with a generally constant decline below \approx 1.5 V in the absence of α -Fe₂O₃. These results are consistent with the CV analysis in Fig. S2.

Figure S6. TEM image of α -Fe₂O₃@TNO nanofiber after 500 cycles.

Figure S7. SEM images of (a) α -Fe₂O₃@TNO electrode after 50, 200, and 500 cycles and (b) HRTEM image of α -Fe₂O₃@TNO nanofiber after 500 cycles.

Figure S8. XRD patterns of α -Fe₂O₃@TNO electrode after 20, 100, 200, and 500 cycles.

Figure S9. Fitted Nyquist plots of α -Fe₂O₃@TNO electrode before and after rate capability test.

Each plot consists of semicircles in the high-medium-frequency region (Rs and the Rct/CPE pair) and one slope in the low-frequency region (Zw), representing the interfacial resistance/charge-transfer resistance and Li⁺ diffusion in the bulk particle, respectively.⁴ The fitted resistance values for α -Fe₂O₃@TNO electrode before and after the rate capability test were 25.8 and 44.5 Ω . This indicates a faster electrochemical kinetics after the activation of the α -Fe₂O₃@TNO electrode through the rate capability test.⁵

Figure S10. (a) CV curves of TNO electrode at scan rates from 0.1 to 1.0 mV s⁻¹ and (b) logarithmic relationship between the peak current and scan rate, (c) CV curves with the separation between total current (red region) and capacitive current (shaded region) at a scan rate of 1.0 mV s⁻¹, and (d) normalized contribution ratio of capacitive capacity at different scan rates.

Figure S11. (a) CV curves of α -Fe₂O₃ electrode at scan rates from 0.1 to 1.0 mV s⁻¹ and (b) logarithmic relationship between the peak current and scan rate, (c) CV curves with the separation between total current (red region) and capacitive current (shaded region) at a scan rate of 1.0 mV s⁻¹, and (d) normalized contribution ratio of capacitive capacity at different scan rates.

Figure S12. (a) Discharge/charge curves and (b) rate performance of $Fe_2O_3@TNO/SSE/LFP$ SSB pouch full cell at current densities between 0.1 and 1.0 A g^{-1} and (c) its long-term cycling performance at 0.1 A g^{-1} .

Materials	Specific	Cycle	Retained	Capacity	Fading	Ref.
	current	number	specific	retention	rate (per	
	(mA g ⁻¹)		capacity		cycle)	
			$(mAh g^{-1})$			
Porous TNO	388	1000	~190	84.0%	0.016%	6
Porous TNO nanotubes	388	700	~220	88.0%	0.017%	7
TNO/Graphene fibers	500	100	195	~76.0%	0.240%	1
TNO/Graphene	388	300	200	72.7%	0.091%	8
Hollow TNO@C spheres	97	500	225	75.0%	0.050%	9
TNO hollow nanofiber	155	150	210	70.0%	0.200%	10
Nb ₂ O ₅ /TNO spheres	388	100	247	89.8%	0.102%	11
Mo-doped TNO	194	10	~300	N/A	N/A	12
Hierarchical MoS ₂ /TNO	1000	200	740	91.6%	0.042%	13
hetero-nanostructure						
α-Fe ₂ O ₃ @TNO	500	500	423	79.2%	0.042%	This
	100	80	611	97.6%	0.028%	work

Table S1. Electrochemical properties of representative TNO-based anodes reported

 recently in comparison with this work.

References

- 1. X. Wang and G. Shen, *Nano Energy*, 2015, **15**, 104-115.
- C. Li, A. Sarapulova, Z. Zhao, Q. Fu, Vanessa Trouillet, A. Missiul, E. Welter and S. Dsoke, *Chem. Mater*, 2019, **31**, 5633-5645.
- K. Cao, L. Jiao, H. Liu, Y. Liu, Y. Wang, Z. Guo and H. Yuan, *Adv. Energy Mater.*, 2015, 5, 1401421.
- Q. Fu, R. Li, X. Zhu, G. Liang, L. Luo, Y. Chen, C. Lin and X. S. Zhao, J. Mater. Chem. A, 2019, 7, 19862-19871.
- 5. Q. Fu, X. Zhu, R. Li, G. Liang, L. Luo, Y. Chen, Y. Ding, C. Lin, K. Wang and X. S. Zhao, *Energy Storage Mater.*, 2020, **30**, 401-411.
- H. Park, D. H. Shin, T. Song, W. I. Park and U. Paik, *J. Mater. Chem. A*, 2017, 5, 6958-6965.
- A. G. Ashish, P. Arunkumar, B. Babu, P. Manikandan, S. Sarang and M. M. Shaijumon, *Electrochim. Acta*, 2015, 176, 285-292.
- 8. G. Zhu, Q. Li and R. Che, *Chem.* 2018, **24**, 12932-12937.
- H. Yu, H. Lan, L. Yan, S. Qian, X. Cheng, H. Zhu, N. Long, M. Shui and J. Shu, *Nano Energy*, 2017, 38, 109-117.
- S. Yoon, S. Y. Lee, T. L. Nguyen, I. T. Kim, S.-G. Woo and K. Y. Cho, J. Alloys Compd., 2018, 731, 437-443.
- 11. H. Song and Y. T. Kim, *Chem. Commun.*, 2015, **51**, 9849-9852.
- C. Pham, J. H. Choi, J. Yun, A. S. Bandarenka, J. Kim, P. V. Braun, S. Y. Jeong and C. R. Cho, *ACS Nano*, 2017, **11**, 1026-1033.