Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Alloy Engineering in Mixed Sn-Ge Perovskites for Photovoltaic Application

Yu-Qian Zhou,[†] Jian Xu,[†] Jian-Bo Liu,^{*,†} and Bai-Xin Liu[†]

[†]Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua

University, Beijing 100084, China

*Corresponding Author:

Jian-bo Liu (E-mail: jbliu@mail.tsinghua.edu.cn)

Note 1: Computational details of effective carrier masses

Effective carrier masses m can be evaluated as

$$m = \hbar \left[\frac{\partial^2 E(k)}{\partial^2 k} \right]^{-1}$$

where E(k) are the energy dispersion relation functions described by band structures, and \hbar is the reduced Planck constant.

Figure S1. Schematic diagrams of the defect levels of Ge_I in $CsGe_{1-x}Sn_xI_3$ (x = 0, 0.25, 0.50, 0.75) by (a) the HSE06 method without SOC and (b) the HSE06 + SOC method. The 1s core level of Cs is used for alignment and the VBM of CsGeI₃ is set to 0. The solid circles in blue represent electrons, while the hollow circles indicate holes. The Fermi level (E_F) is shown as a black dotted line.

Figure S2. Schematic diagrams of the defect levels of Ge₁ and Sn₁ in CsGe_{1-x}Sn_xI₃ (x = 0.25, 0.50, 0.75) by the HSE method with different mixing parameter (α): (a) Ge₁ with α = 0.25 (HSE06), (b) Ge₁ with $\alpha \neq 0.25$, (c) Sn₁ with α = 0.25 (HSE06), and (d) Sn₁ with $\alpha \neq 0.25$. CsGeI₃ is also shown for comparison. For HSE with $\alpha \neq 0.25$, the α of CsGeI₃ is set to 0.32 to fit the experimental bandgap of 1.6 eV¹, and the α of CsGe_{0.5}Sn_{0.5}I₃ (x = 0.50) is set to 0.45 to fit the experimental bandgap of 1.5 eV². For CsGe_{0.75}Sn_{0.25}I₃ (x = 0.25) and CsGe_{0.25}Sn_{0.75}I₃ (x = 0.75), the same α as CsGe_{0.5}Sn_{0.5}I₃ (x = 0.50) are used, since the experimental bandgap of them is not available yet. The 1s core level of Cs is used for alignment and the VBM of CsGeI₃ is set to 0. The solid circles in blue represent electrons and the Fermi level is shown as a black dotted line.

Figure S3. Volume change with Sn concentration (x) for $CsGe_{1-x}Sn_xI_3$ (x = 0, 0.25, 0.5, and 0.75).

Figure S4. Orbital-projected density of states (DOS) and projected crystal orbital hamilton population (COHP) for $CsGe_{1-x}Sn_xI_3$: (a) x = 0 (CsGeI₃), (b) x = 0.25 (CsGe_{0.75}Sn_{0.25}I₃), (c) x = 0.50 (CsGe_{0.5}Sn_{0.5}I₃), and (d) x = 0.75 (CsGe_{0.25}Sn_{0.75}I₃). The Fermi level is set to zero.

Figure S5. Unfolded band structure for CsGe_{0.5}Sn_{0.5}I₃.

Figure S6. HSE06 calculated band structure (top panel) and optical transition dipole moment (bottom panel) for (a) $CsGe_{0.75}Sn_{0.25}I_3$ (x = 0.25) and (b) $CsGe_{0.25}Sn_{0.75}I_3$ (x = 0.75).

Figure S7. Calculated formation energies of Ge_I and Sn_I defects with different charge states q in CsGe₁. _xSn_xI₃ as a function of the Fermi level: (a) x = 0.25, (b) x = 0.5, and (c) x = 0.75. The slope of the line segments indicates the defect charge states, and the kinks denote the transition energy levels. The Fermi

Note 2: Computational details of defect formation energies

The formation energy $E^{f}[X^{q}]$ of defect X in charge state q as a function of the Fermi level E_{F} can be evaluated as³

$$E^{f}[X^{q}] = E_{\text{tot}}[X^{q}] - E_{\text{tot}}[P] + \sum_{i} n_{i}\mu_{i} + q(\varepsilon_{\text{VBM}} + E_{F}) + E_{\text{align}}[X^{q}]$$
(1)

where $E_{tot}[X^{q}]$ and $E_{tot}[P]$ are the total energy for defective supercells and the corresponding perfect crystal, respectively. The number of atoms of type *i* that have been added to $({}^{n_i} < 0)$ or removed from $({}^{n_i} > 0)$ the supercell is indicated by n_i . μ_i is the corresponding chemical potential. ε_{VBM} is the eigenvalue of valenceband maximum (VBM) in the perfect crystal and E_F is the Fermi level that refers to the VBM. $E_{align}[X^{q}]$ (i.e., $q\Delta V$) is a correction term for potential-alignment to correct the finite-size effects in charged systems.^{4, 5} The CTLs $\varepsilon(q_1/q_2)$ are defined as the Fermi-level positions at which the formation energy of charge states q_1 is equal to that of q_2 : 6, 7

$$\varepsilon (q_1/q_2) = \frac{\left(E_{\text{tot}}[X^{q_1}] + E_{\text{align}}[X^{q_1}]\right) - \left(E_{\text{tot}}[X^{q_2}] + E_{\text{align}}[X^{q_2}]\right)}{(q_2 - q_1)} - \varepsilon_{\text{VBM}}$$
(2)

Figure S8. Crystal structures of (a) $CsGeI_3$ and (b) $CsSnI_3$. Green, gray, red, and purple balls indicate Cs, Ge, Sn, and I atoms, respectively. (c) The angles between the basis vectors of $CsGe_{1-x}Sn_xI_3$ alloys. For x = 0.75, the average bond angle is shown.

Figure S9. Calculated transition energy levels for (a) Ge_1 and (b) Sn_1 in $CsGe_{1-x}Sn_xI_3$ (x = 0.25, 0.50, and 0.75). $CsGeI_3$ and $CsSnI_3$ (space group Pnma) are also shown for comparison. The 1s core level of Cs is used for alignment and the VBM of $CsGeI_3$ is set to 0.

References:

- C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2015, **137**, 6804-6819.
- M. Chen, M.-G. Ju, H. F. Garces, A. D. Carl, L. K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R. L. Grimm, D. Pacifici, X. C. Zeng, Y. Zhou and N. P. Padture, *Nat. Commun.*, 2019, 10, 16.
- C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti and C. G. Van de Walle, *Rev. Mod. Phys.*, 2014, 86, 253-305.
- 4. T. Mattila and A. Zunger, *Phys. Rev. B*, 1998, **58**, 1367-1373.
- 5. S. Lany and A. Zunger, *Modell. Simul. Mater. Sci. Eng.*, 2009, 17, 084002.
- 6. G. Y. Yonggang, X. Zhang and A. Zunger, *Phys. Rev. B*, 2017, **95**, 085201.
- C. Freysoldt, B. Lange, J. Neugebauer, Q. Yan, J. L. Lyons, A. Janotti and C. G. Van de Walle, *Phys. Rev. B*, 2016, 93, 165206.