Competition between activation energy and migration entropy in lithium ion conduction in superionic NASICON-type Li_{1-3x}Ga_xZr₂ (PO₄)₃ Supporting information

Shanshan Duan,^a Can Huang,^a Min, Liu,^b Zhiwen Cao,^a Xiaocong Tian,^a Shuen Hou,^a Jiangyu Li, ^c

Boyuan Huang,^{dc*}Hongyun Jin^{a*}

^a Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

^b Department of Technology Centre of Dongfeng Motor Group Co. LTD, Wuhan, 430058, China.

^cDepartment of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China

^d Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.

* E-mail: jinhongyun@cug.edu.cn, huangby@sustech.edu.cn

Figure S1 Rietveld refinement of $\text{LiZr}_2(\text{PO}_4)_3$, experimental data are shown as points; the red line denotes the calculated pattern; and the difference profile is shown in blue.

Figure S2 SEM images of (a) $LiZr_2(PO_4)_3$, (b) $Li_{0.94}Ga_{0.02}Zr_2(PO_4)_3$, (c) $Li_{0.85}Ga_{0.05}Zr_2(PO_4)_3$ and (d) $Li_{0.7}Ga_{0.1}Zr_2(PO_4)_3$

Figure S3 (a) HAADF image and corresponding (b) O, (c) Zr, (d) P element mappings of Li_{0.85}Ga_{0.05}Zr₂(PO₄)₃

Figure S4 Selected area electron diffraction pattern of LiZr₂(PO₄)₃.

Figure S5 Selected area electron diffraction pattern of Li_{0.85}Ga_{0.05}Zr₂(PO₄)₃.

Figure S6 R^2 mappings of (a) LiZr₂(PO₄)₃ and (b) Li_{0.85}Ga_{0.05}Zr₂(PO₄)₃.

Figure S7 Complex impedance plots measured at room temperature for $LiZr_2(PO_4)_3$, $Li_{0.94}Ga_{0.02}Zr_2(PO_4)_3$, $Li_{0.85}Ga_{0.05}Zr_2(PO_4)_3$ and $Li_{0.7}Ga_{0.1}Zr_2(PO_4)_3$.

Figure S8 Frequency-dependent ionic conductivity of the $Li_{1-3x}Ga_xZr_2(PO_4)_3$ (x=0, 0.02, 0.05, 0.1) samples.

Figure S9 A method of estimating jump frequency from $Li_{0.85}Ga_{0.05}Zr_2(PO_4)_3$ a.c. conductivity data. The insert represents a larger version in high frequency.

Figure S10 Compositional dependence of the jump distance and jump frequency of the Li_{1-3x}Ga_xZr₂(PO₄)₃ (x=0, 0.02, 0.05, 0.1) samples. Straight lines through data points are guides for the eye.

Figure S11 ^7Li MAS-NMR spectra of (a) $\text{Li}\text{Zr}_2(\text{PO}_4)_3$ and (b)

Li_{0.85}Ga_{0.05}Zr₂(PO₄)₃.

Table S1 Comparison of chemical analysis between $LiZr_2(PO_4)_3$, $Li_{0.94}Ga_{0.02}Zr_2(PO_4)_3$, $Li_{0.85}Ga_{0.05}Zr_2(PO_4)_3$ and $Li_{0.7}Ga_{0.1}Zr_2(PO_4)_3$ by ICP-OES

Sample	Li (wt.%)	Zr (wt.%)	P (wt.%)	Ga (wt.%)	Al (wt.%)
$LiZr_2(PO_4)_3$	1.38	37.7	19.9	\	0.613
$Li_{0.94}Ga_{0.02}Zr_2(PO_4)_3$	1.27	37.2	19.4	0.251	0.529
$Li_{0.85}Ga_{0.05}Zr_2(PO_4)_3$	1.11	36.5	18.8	0.683	0.507
$Li_{0.7}Ga_{0.1}Zr_2(PO_4)_3$	0.945	36.7	19.2	1.36	0.563

Table S2 Rietveld refinements for	$LiZr_2(PO_4)_3$ and	Li _{0.85} Ga _{0.05}	$_{5}Zr_{2}(PO_{4})_{3}$
-----------------------------------	----------------------	---------------------------------------	--------------------------

Sample	$LiZr_2(PO_4)_3$	$Li_{0.85}Ga_{0.05}Zr_2(PO_4)_3$		
R _p	8.22%	7.52%		
a, Å	8.8473	8.8541		
c, Å	22.1636	22.1458		
V, Å ³	1502.441	1503.526		

<p-o1>, Å</p-o1>	1.4366(2)	1.4169(2)
<p-o2>, Å</p-o2>	1.5395(2)	1.4990(2)
<zr-o1>, Å</zr-o1>	2.1015(3)	2.1714(3)
<zr-o2>, Å</zr-o2>	2.0385(3)	2.0627(3)

Table S3 CPE1, R1, CPE2, R2 and W fitting values for $LiZr_2(PO_4)_3$, $Li_{0.94}Ga_{0.02}Zr_2(PO_4)_3$, $Li_{0.85}Ga_{0.05}Zr_2(PO_4)_3$ and $Li_{0.7}Ga_{0.1}Zr_2(PO_4)_3$

Sample	CPE ₁	R ₁	CPE ₂	R ₂	W
$LiZr_2(PO_4)_3$	119.8 pF	2302 Ω	29.81 nF	826.3 Ω	$43.15 \ \Omega \ S^{-1/2}$
$Li_{0.94}Ga_{0.02}Zr_2(PO_4)_3$	19.04 pF	578.3 Ω	1.224nF	354.5 Ω	$15.27 \Omega S^{-1/2}$
Li _{0.85} Ga _{0.05} Zr ₂ (PO ₄) ₃	10.94 pF	193.7 Ω	1.061 nF	367.5 Ω	$16.58 \Omega \text{ S}^{-1/2}$
$Li_{0.7}Ga_{0.1}Zr_2(PO_4)_3$	53.24 pF	1341 Ω	3.478 nF	746.2 Ω	$35.53 \Omega \text{ S}^{-1/2}$