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Synthesis of LFP and NCA cathodes 

The charge-discharge measurements of CPEs were conducted using the CR2032 type coin cell 

structure. The cathode was realized using LFP, while the Li-foil was acted as an anode. The 

cathode slurry was composed of 90 wt.% LFP powder, 5 wt.% super P, and 5 wt.% 

polyvinylidene fluoride (PVDF). The constituents of the cathode were dissolved in N-Methyl-

2-pyrrolidone (NMP) using high energy ball-milling mixing. Then coated on the Al-foil and 

dried in vacuum at 110 ℃ for 12 h. The charge-discharged analysis was done using an 

instrument (WonATech, WBCS3000) between 2.6 V–4.3 V at a current density of 0.1 C. The 

specific capacity was calculated through the mass of active material. The current density at 1C 

= 170 mA/g for the LFP cathode. The area mass loading of the active material was 2.2 mg/cm2. 

A similar cathode fabrication process was used for NCA with the same mass loading. The 

current density at 1C = 195 mA/g for the NCA cathode.

Fabrication of coin cells for charge/discharge measurements

The coin cells were fabricated using three types of solid electrolytes i.e., SPE, 5% CPE, and 5% 

MZ-CPE. The Li-foil is used as an anode for all the cells. LFP was used as a cathode for SPE 

and 5% CPE solid electrolytes, whereas two types of cathodes were used for 5% MZ-CPE solid 

electrolyte. Thus, the cell structures for SPE and 5% CPE solid electrolytes were [Li|SPE|LFP] 

and [Li|5% CPE|LFP], respectively. However, the cell structures used for 5% MZ-CPE were 

[Li|5% MZ-CPE|LFP] and [Li|5% MZ-CPE|NCA]. 

Fabrication of coin cells using liquid electrolyte for charge/discharge measurements

The coin cell structure used for liquid electrolytes was [Li|Liquid electrolytes|LFP]. 1 M LiPF6 

in a mixture of ethylene carbonate–dimethyl carbonate (EC–DMC) with a volume ratio of 3: 7 

was used as the liquid electrolyte (Starlyte, Korea). The Celgard 2400 membrane was used as a 

separator. 
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Degree of crystallinity calculation from DSC data

DSC data for phase transition behavior of the PEO, SPE and MZ-CPE with different content 

of M-SSZ-13 zeolite including glass transition temperature (Tg), Melting temperature (Tm), 

enthalpy of melting (∆Hm) and degree of crystallinity (Xc). 

                                                                    (S1)
𝑥𝐶 ≡

Δ𝐻𝑚

Δ𝐻0

The degree of crystallinity (Xc) can be estimated according to Eq. (S1), where, ∆Hm was 

obtained from DSC results, and ∆H0 is the melting enthalpy of 100 % crystalline PEO (213.7 

J/g) reported in literature [1,2]. 

Activation energy calculation

The Vogel-Tamman-Fulcher (VTF) equation (S2) is used to determine the value of activation 

energy (Ea) of the SPE and MZ-CPEs [3]. 

                                                           (S2)𝜎= 𝐴𝑇
‒ 1

2𝑒

‒ 𝐸𝑎
𝑅(𝑇 ‒ 𝑇0)

Where, A = pre-exponential factor, T = temperature, R = Universal gas constant (0.008314 

kJ/mol/K) and T0 = equilibrium glass-transition temperature of the copolymer (Tg -50).

The eq. (S2) can be rewritten as

                                            (S3)
𝑙𝑜𝑔(𝜎.𝑇

1
2) = log (𝐴) ‒ 𝐸𝑎

𝑅(𝑇 ‒ 𝑇0)

The curves between  vs.  were plotted for each sample as shown in Fig. 
𝑙𝑜𝑔(𝜎.𝑇

1
2)

1
(𝑇 ‒ 𝑇0)

S18.
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Furthermore, those curves were linearly fitted. The slope of the curve with the  axis 

1
(𝑇 ‒ 𝑇0)

provides the value of Ea, whereas, the intercept on the  axis gives the value of A. 
𝑙𝑜𝑔(𝜎.𝑇

1
2)

The obtained values of Ea and log(A) are listed in Table S5. 

Table S1. Composition of SPE, Li-salt, and MZ-SSZ-13 dissolved in ACN (15 mL) for 

synthesis of MZ-CPE. Ball milling time for all the samples are 48 h.

Sample names PEO (g) LiTFSI (g) MZ-SSZ-13 (g)
SPE 0.40 0.102 NA
5% MZ-CPE 0.40 0.102 0.0251
10% MZ-CPE 0.40 0.102 0.0502
15% MZ-CPE 0.40 0.102 0.0753
20% MZ-CPE 0.40 0.102 0.1004
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Table S2. Ionic conductivities of, 5% MZ-CPE @30 ℃ With different ball-milling time. 

Ball-milling duration (h) σ (S/cm) at 30 ℃
48 6.16×10-4

96 1.40×10-4

144 1.29×10-4

192 Very fragile
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Table S3. DSC data for phase transition behavior of the PEO, SPE and MZ-CPE with different content 
of M-SSZ-13 zeolite including glass transition temperature (Tg), Melting temperature (Tm), enthalpy of 
melting (∆Hm) and degree of crystallinity (Xc). 

Sample names Tg (℃) Tm (℃) ∆Hm (J/g) Xc (%)
PEO NA 70.9 176.3 82.4
SPE -33.6 63.7 69.8 32.7
5% MZ-CPE -36.8 60.6 67.7 31.6
10% MZ-CPE -34.2 61.8 64.9 30.4
15% MZ-CPE -34.8 60.2 54.9 25.7
20% MZ-CPE -36.2 59.5 51.9 24.3
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Table S4. Ionic conductivities of SPE, 5% MZ-CPE, 10% MZ-CPE, 15% MZ-CPE and 20% 

MZ-CPE measured at various temperatures (20, 30, 40, 50, 60 and 70 ℃).

                                                              σ (S/cm)
Samples       20 ℃                       30 ℃                         40 ℃                        50 ℃                        60 ℃                        70 ℃
SPE 2.29×10-6 1.84×10-5 1.15×10-4 5.24×10-4 1.58×10-3 2.34×10-3

5% MZ-CPE 8.00×10-5 6.16×10-4 3.44×10-3 1.66×10-2 3.61×10-2 5.34×10-2

10% MZ-CPE 3.76×10-5 2.16×10-4 7.76×10-4 6.16×10-3 6.74×10-3 2.45×10-2

15% MZ-CPE 2.49×10-5 1.38×10-4 1.02×10-3 3.29×10-3 1.70×10-2 2.39×10-2

20% MZ-CPE 1.17×10-5 6.60×10-5 5.60×10-4 2.71×10-3 6.16×10-3 1.20×10-2
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Table S5. The fitting parameter to obtain the activation energy of the polymer-based solid 
electrolyte.

Sample Slop [Ea/R] (K) Intercept [log(A)] Ea (kJ/mol)
SPE -873.21 4.5267 7.25987
5% MZ-CPE -560.28 3.5953 4.65817
10% MZ-CPE -619.11 3.5753 5.14728
15% MZ-CPE -641.66 3.7442 5.33476
20% MZ-CPE -700.36 3.8388 5.82279
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Table S6. Measured parameter values used for the determination of tLi
+ at 60 ⁰C. 

Sample I0 (µA) Is (µA) R0 (Ω) Rs (Ω) V (mV)∆ tLi
+

SPE 490 1.07 264 890 5 0.29

5% CPE 566 1.25 890 1544 5 0.57

5% MZ-CPE 696 10.38 947 1120 5 0.85
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Table S7. Comparison of battery performance for composite polymer electrolytes for Li-
metal solid-state batteries.

*Lithium-Sulphur battery

WV = working voltage, WT = working temperature, SC = specific capacity, TSC = 
Theoretical specific capacity, RR = retention rate, LW = loading weight, SLR = slurry ratio, 
AM = active materials, CB = carbon black, and BD = binder

Electrolyte σ (S/cm) Cathode/Anode WV 
(V)

WT 
(℃)

SC 
(mAh/g)

TSC
(mA/g)

SLR 
(AM:CB:BD)

RR (%)
(after 
cycles)

LW
(mg/cm2)

Ref.

PEO-
LiTFSI-
MIL-53(Al)

3.9×10-4 

@75 ℃
PANI@C/S-
280/Li

1.0-3.0 80 905* 1672 80:10:10 96.7 (60) NA [4]

PEO-
LiTFSI-
HMOP

4.0×10-4 

@65 ℃
LiFPO4/Li 2.9-3.8 65 131 NA 60:10:30 91.6 (100) 2 [5]

PEO-
LiClO4-SiO2

1.2×10-3 

@60 ℃
LiFPO4/Li 2.5-4.1 90 131 170 65:15:20 80 (80) 1.0 [6]

PEO-
LLZTO

4.5×10-4 

@60 ℃
LiFPO4/Li 2.4-4.2 60 116 170 80:10:10 90 (200) NA [7]

PEO-
LiTFSI-
IL@ZrO2

4.9×10-4 

@50 ℃
N-CNs/S/Li 1.8-2.6 50 1437* NA 70:10:20 68.6 (40) 1.18 [8]

PEO-
LiTFSI-
SSZ-13

4.4×10-5 

@20 ℃
1.91×10-3 

@60 ℃

LiFPO4/Li 2.5-4.0 58 169 NA 80:10:10 92 (160) 4.0 [9]

PEO-
LiTFSI-
LLZTO-SN

1.22×10-4 

@30 ℃
LiFPO4/Li 2.8-4.0 60 152 150 70:10:10 95 (50) NA [10]

PEO-
LiPCSI

8.32×10-5 

@65 ℃
LiFPO4/Li NA 60 141 NA NA 85 (80) NA [11]

PEO-
LiTFSI-M-
SSZ-13

6.16×10-4 

@30 ℃
5.34×10-2 

@ 70 ℃

LiFPO4/Li 2.6-4.3 60 154 170 90:05:05 94.0 (80) 2.2 This 
work
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Fig. S1. (a) The schematic diagram of wettability analyser using force tensiometer and (b) the 
mass vs time curve for the zeolite before and after surface modification with BYK-SILCLEAN 
3700.
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Fig. S2. Dispersion of SSZ-13 zeolite and M-SSZ-13 in ACN, (a) Right after 24 h stirring, (b) 
dispersion stability after 15 min, (c) dispersion stability after 1 h, and (d) dispersion stability 
after 3 h.
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Fig. S3. Contact angle images of (a) SPE and (b) 5% MZ-CPE using deionized water droplet.
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Fig. S4. Nitrogen adsorption-desorption isotherm of (a) SSZ-13 zeolite, (b) M-SSZ-13 zeolite 
and (c) BJH pore size (dp) distribution curve of M-SSZ-13 Zeolite.
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Fig. S5. Stress-strain curves of SPE, 5% CPE, 5% MZ-CPE, 10% MZ-CPE, 
15% MZ-CPE, and 20% MZ-CPE solid electrolytes.
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Fig. S6. FE-SEM images of (a) SSZ-13 and (b) M-SSZ-13 zeolites.
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Fig. S7. SEM images of M-SSZ-13 with ACN ball-milled for various time duration, (a, b) 48 
h, (c, d) 96 h, (e, f) 144 h, and (g, h) 192 h.
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Fig. S8. Optical images of 5% MZ-CPE for ball-milling duration of (a) after 96 h, (b) after 144 
h and (c) after 192 h.
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Fig. S9. Optical images of MZ-CPE films for various contents of M-SSZ-13 after 48 h of ball-
milling (a) 5% MZ-CPE, (b) 10% MZ-CPE, (c) 15% MZ-CPE and (d) 20% MZ-CPE.
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Fig. S10. SEM images of (a) SPE, (b) 5% MZ-CPEs, (c) 10% MZ-CPE, (d) 15% MZ-CPE, and 
(e) 20% MZ-CPE solid electrolytes. 
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Fig. S11. FE-SEM image of (a) 5% MZ-CPE, and EDX mapping of 5% MZ-CPE for (b) C, 
(c) Si, (d) O, (e) Al, (f) S, and (g) F elements.
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Fig. S12. SEM image (a) SPE, and EDX mapping of SPE for (b) C, (c) O, (d) S, and (e) F 
elements.
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Fig. S13. XRD patterns of SSZ-13, M-SSZ-13, PEO and LiTFSI from 10⁰ to 90⁰. 
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Fig. S14. (a) FTIR spectra of SPE, 5% MZ-CPE, 10% MZ-CPE, 15% MZ-CPE and 20% MZ-
CPE between 650–3900 cm-1, (b) FTIR spectra of SSZ-13, M-SSZ-13, PEO and LiTFSI 
between 650–3900 cm-1, and (c) Magnified FTIR spectra of SSZ-13 and M-SSZ-13 in the range 
of 1303–1959 cm-1. 
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Fig. S15. Derived weight vs. temperature curves for PEO, 10% MZ-CPE, 15% MZ-CPE and 
20% MZ-CPE in the temperature range of 250 - 600 ℃. 
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Fig. S16. DSC and TGA curves of PEO in the temperature ranges of -50 ℃ – 150 ℃ and 25 – 
600 ℃, respectively. All analysis is made under the flow of N2 along with heating ramp-rate of 
10 ℃/min. 
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Fig. S17. (a-c) Optical images of symmetrical coin cell [Li|5% MZ-CPE|Li] after the activation 
@70 ℃ for 2 h. The 5% MZ-CPE very strongly attached with Li-metal.
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Fig. S18. VTF fitting results [between  vs. ] for determination of the activation 𝑙𝑜𝑔(𝜎.𝑇
1
2)

1
(𝑇 ‒ 𝑇0)

energy of SPE and MZ-CPEs (5%, 10%, 15%, and 20%).
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Fig. S19. Current-time profile of (a) SPE for Li symmetric batteries [Li|SPE|Li] @60 ℃ 
(Inset: Nyquist plots before and after polarization) and (b) 5% CPE for Li symmetric batteries 
[Li|5% CPE|Li] @60 ℃ (Inset: Nyquist plots before and after polarization). 
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Fig. S20. Comparison of cycling performance of 5% CPE with the cell structure of [Li|5% 
CPE|LFP] (@60 ℃), liquid electrolyte with cell structure of [Li|liquid electrolyte|LFP] (@30 
℃) and SPE with cell structure of [Li|SPE|LFP] (@60 ℃) at the discharge current density of 
0.1 C.
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Fig. S21. Cycling performance of 5% MZ-CPE with cell structure of [Li|5% MZ-CPE|NCA] 
at the discharge current density of 0.1 C (@60 ℃).
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