Supporting Information for

Enhancement of ionic conductivity of a composite polymer electrolyte via surface functionalization of SSZ-13 zeolite for all-solid-state Li-ion batteries

Hasan Jamal^a, Firoz Khan^b, Suyeon Hyun^a, Sang Won Min^a and Jae Hyun Kim^a

^aDivision of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333,

Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu 42988,

Republic of Korea

^bCenter of Research Excellence in Renewable Energy (CORE-RE), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

*Correspondence: jaehyun@dgist.ac.kr; Tel.: +82-53-7853-610; Fax: +82-53-7853-439

Synthesis of LFP and NCA cathodes

The charge-discharge measurements of CPEs were conducted using the CR2032 type coin cell structure. The cathode was realized using LFP, while the Li-foil was acted as an anode. The cathode slurry was composed of 90 wt.% LFP powder, 5 wt.% super P, and 5 wt.% polyvinylidene fluoride (PVDF). The constituents of the cathode were dissolved in N-Methyl-2-pyrrolidone (NMP) using high energy ball-milling mixing. Then coated on the Al-foil and dried in vacuum at 110 °C for 12 h. The charge-discharged analysis was done using an instrument (WonATech, WBCS3000) between 2.6 V–4.3 V at a current density of 0.1 C. The specific capacity was calculated through the mass of active material. The current density at 1C = 170 mA/g for the LFP cathode. The area mass loading of the active material was 2.2 mg/cm². A similar cathode fabrication process was used for NCA with the same mass loading. The current density at 1C = 195 mA/g for the NCA cathode.

Fabrication of coin cells for charge/discharge measurements

The coin cells were fabricated using three types of solid electrolytes i.e., SPE, 5% CPE, and 5% MZ-CPE. The Li-foil is used as an anode for all the cells. LFP was used as a cathode for SPE and 5% CPE solid electrolytes, whereas two types of cathodes were used for 5% MZ-CPE solid electrolyte. Thus, the cell structures for SPE and 5% CPE solid electrolytes were [Li|SPE|LFP] and [Li|5% CPE|LFP], respectively. However, the cell structures used for 5% MZ-CPE were [Li|5% MZ-CPE|LFP] and [Li|5% MZ-CPE|NCA].

Fabrication of coin cells using liquid electrolyte for charge/discharge measurements

The coin cell structure used for liquid electrolytes was [Li|Liquid electrolytes|LFP]. 1 M LiPF6 in a mixture of ethylene carbonate–dimethyl carbonate (EC–DMC) with a volume ratio of 3: 7 was used as the liquid electrolyte (Starlyte, Korea). The Celgard 2400 membrane was used as a separator.

Degree of crystallinity calculation from DSC data

DSC data for phase transition behavior of the PEO, SPE and MZ-CPE with different content of M-SSZ-13 zeolite including glass transition temperature (T_g), Melting temperature (T_m), enthalpy of melting (ΔH_m) and degree of crystallinity (X_c).

$$x_{C} \equiv \frac{\Delta H_{m}}{\Delta H_{0}} \tag{S1}$$

The degree of crystallinity (X_c) can be estimated according to Eq. (S1), where, ΔH_m was obtained from DSC results, and ΔH_0 is the melting enthalpy of 100 % crystalline PEO (213.7 J/g) reported in literature [1,2].

Activation energy calculation

The Vogel-Tamman-Fulcher (VTF) equation (S2) is used to determine the value of activation energy (E_a) of the SPE and MZ-CPEs [3].

$$\sigma = AT^{-1/2} e^{\frac{-E_a}{R(T-T_0)}}$$
(S2)

Where, A = pre-exponential factor, T = temperature, R = Universal gas constant (0.008314 kJ/mol/K) and T_0 = equilibrium glass-transition temperature of the copolymer (T_g -50).

The eq. (S2) can be rewritten as

$$log(\sigma.T^{1/2}) = log(A) - \frac{E_a}{R(T - T_0)}$$
(S3)

The curves between $log(\sigma.T^{1/2})_{\text{vs.}} \frac{1}{(T-T_0)}$ were plotted for each sample as shown in Fig. S18.

Furthermore, those curves were linearly fitted. The slope of the curve with the $\frac{1}{(T-T_0)}$ axis provides the value of E_a, whereas, the intercept on the $log(\sigma . T^{1/2})$ axis gives the value of A. The obtained values of E_a and log(A) are listed in Table S5.

Table S1. Composition of SPE, Li-salt, and MZ-SSZ-13 dissolved in ACN (15 mL) forsynthesis of MZ-CPE. Ball milling time for all the samples are 48 h.

Sample names	PEO (g)	LiTFSI (g)	MZ-SSZ-13 (g)
SPE	0.40	0.102	NA
5% MZ-CPE	0.40	0.102	0.0251
10% MZ-CPE	0.40	0.102	0.0502
15% MZ-CPE	0.40	0.102	0.0753
20% MZ-CPE	0.40	0.102	0.1004

Ball-milling duration (h)	σ (S/cm) at 30 °C
48	6.16×10-4
96	1.40×10 ⁻⁴
144	1.29×10 ⁻⁴
192	Very fragile

 Table S2. Ionic conductivities of, 5% MZ-CPE @30 °C With different ball-milling time.

Table S3. DSC data for phase transition behavior of the PEO, SPE and MZ-CPE with different content of M-SSZ-13 zeolite including glass transition temperature (T_g), Melting temperature (T_m), enthalpy of melting (ΔH_m) and degree of crystallinity (X_c).

Sample names	$T_{g}(^{\circ}C)$	T_{m} (°C)	$\Delta H_{m} (J/g)$	$X_{c}(\%)$	
PEO	NA	70.9	176.3	82.4	
SPE	-33.6	63.7	69.8	32.7	
5% MZ-CPE	-36.8	60.6	67.7	31.6	
10% MZ-CPE	-34.2	61.8	64.9	30.4	
15% MZ-CPE	-34.8	60.2	54.9	25.7	
20% MZ-CPE	-36.2	59.5	51.9	24.3	

σ (S/cm)								
Samples –	20 °C	30 °C	40 °C	50 °C	60 °C	70 °C		
SPE	2.29×10 ⁻⁶	1.84×10 ⁻⁵	1.15×10 ⁻⁴	5.24×10-4	1.58×10-3	2.34×10 ⁻³		
5% MZ-CPE	8.00×10 ⁻⁵	6.16×10 ⁻⁴	3.44×10 ⁻³	1.66×10 ⁻²	3.61×10 ⁻²	5.34×10 ⁻²		
10% MZ-CPE	3.76×10 ⁻⁵	2.16×10-4	7.76×10 ⁻⁴	6.16×10 ⁻³	6.74×10 ⁻³	2.45×10 ⁻²		
15% MZ-CPE	2.49×10 ⁻⁵	1.38×10 ⁻⁴	1.02×10 ⁻³	3.29×10-3	1.70×10 ⁻²	2.39×10 ⁻²		
20% MZ-CPE	1.17×10 ⁻⁵	6.60×10 ⁻⁵	5.60×10 ⁻⁴	2.71×10-3	6.16×10 ⁻³	1.20×10 ⁻²		

Table S4. Ionic conductivities of SPE, 5% MZ-CPE, 10% MZ-CPE, 15% MZ-CPE and 20% MZ-CPE measured at various temperatures (20, 30, 40, 50, 60 and 70 °C).

Sample	Slop $[E_a/R](K)$	Intercept [log(A)]	E _a (kJ/mol)
SPE	-873.21	4.5267	7.25987
5% MZ-CPE	-560.28	3.5953	4.65817
10% MZ-CPE	-619.11	3.5753	5.14728
15% MZ-CPE	-641.66	3.7442	5.33476
20% MZ-CPE	-700.36	3.8388	5.82279

Table S5. The fitting parameter to obtain the activation energy of the polymer-based solid electrolyte.

Sample	$I_0(\mu A)$	$I_s(\mu A)$	$R_{0}\left(\Omega ight)$	$R_{s}\left(\Omega ight)$	$\Delta V (mV)$	t_{Li}^+
SPE	490	1.07	264	890	5	0.29
5% CPE	566	1.25	890	1544	5	0.57
5% MZ-CPE	696	10.38	947	1120	5	0.85

Table S6. Measured parameter values used for the determination of t_{Li}^+ at 60 0 C.

Electrolyte	σ (S/cm)	Cathode/Anode	WV (V)	WT (°C)	SC (mAh/g)	TSC (mA/g)	SLR (AM:CB:BD)	RR (%) (after cycles)	LW (mg/cm²)	Ref.
PEO- LiTFSI- MIL-53(Al)	3.9×10 ⁻⁴ @75 ℃	PANI@C/S- 280/Li	1.0-3.0	80	905*	1672	80:10:10	96.7 (60)	NA	[4]
PEO- LiTFSI- HMOP	4.0×10 ^{−4} @65 °C	LiFPO ₄ /Li	2.9-3.8	65	131	NA	60:10:30	91.6 (100)	2	[5]
PEO- LiClO ₄ -SiO ₂	1.2×10⁻³ @60 ℃	LiFPO ₄ /Li	2.5-4.1	90	131	170	65:15:20	80 (80)	1.0	[6]
PEO- LLZTO	4.5×10 ^{−4} @60 °C	LiFPO ₄ /Li	2.4-4.2	60	116	170	80:10:10	90 (200)	NA	[7]
PEO- LiTFSI- IL@ZrO ₂	4.9×10⁻⁴ @50 ℃	N-CNs/S/Li	1.8-2.6	50	1437*	NA	70:10:20	68.6 (40)	1.18	[8]
PEO- LiTFSI- SSZ-13	4.4×10 ⁻⁵ @20 °C 1.91×10 ⁻³	LiFPO ₄ /Li	2.5-4.0	58	169	NA	80:10:10	92 (160)	4.0	[9]
PEO- LiTFSI- LLZTO-SN	@60 °C 1.22×10 ⁻⁴ @30 °C	LiFPO ₄ /Li	2.8-4.0	60	152	150	70:10:10	95 (50)	NA	[10]
PEO- LiPCSI	8.32×10 ⁻⁵ @65 °C	LiFPO ₄ /Li	NA	60	141	NA	NA	85 (80)	NA	[11]
PEO- LiTFSI-M- SSZ-13	6.16×10 ⁻⁴ @30 °C 5.34×10 ⁻² @ 70 °C	LiFPO ₄ /Li	2.6-4.3	60	154	170	90:05:05	94.0 (80)	2.2	This work

Table S7. Comparison of battery performance for composite polymer electrolytes for Limetal solid-state batteries.

*Lithium-Sulphur battery

WV = working voltage, WT = working temperature, SC = specific capacity, TSC = Theoretical specific capacity, RR = retention rate, LW = loading weight, SLR = slurry ratio, AM = active materials, CB = carbon black, and BD = binder

Fig. S1. (a) The schematic diagram of wettability analyser using force tensiometer and (b) the mass vs time curve for the zeolite before and after surface modification with BYK-SILCLEAN 3700.

Fig. S2. Dispersion of SSZ-13 zeolite and M-SSZ-13 in ACN, (a) Right after 24 h stirring, (b) dispersion stability after 15 min, (c) dispersion stability after 1 h, and (d) dispersion stability after 3 h.

Fig. S3. Contact angle images of (a) SPE and (b) 5% MZ-CPE using deionized water droplet.

Fig. S4. Nitrogen adsorption-desorption isotherm of (a) SSZ-13 zeolite, (b) M-SSZ-13 zeolite and (c) BJH pore size (d_p) distribution curve of M-SSZ-13 Zeolite.

Fig. S5. Stress-strain curves of SPE, 5% CPE, 5% MZ-CPE, 10% MZ-CPE, 15% MZ-CPE, and 20% MZ-CPE solid electrolytes.

Fig. S6. FE-SEM images of (a) SSZ-13 and (b) M-SSZ-13 zeolites.

Fig. S7. SEM images of M-SSZ-13 with ACN ball-milled for various time duration, (a, b) 48 h, (c, d) 96 h, (e, f) 144 h, and (g, h) 192 h.

Fig. S8. Optical images of 5% MZ-CPE for ball-milling duration of (a) after 96 h, (b) after 144 h and (c) after 192 h.

Fig. S9. Optical images of MZ-CPE films for various contents of M-SSZ-13 after 48 h of ballmilling (a) 5% MZ-CPE, (b) 10% MZ-CPE, (c) 15% MZ-CPE and (d) 20% MZ-CPE.

Fig. S10. SEM images of (a) SPE, (b) 5% MZ-CPEs, (c) 10% MZ-CPE, (d) 15% MZ-CPE, and (e) 20% MZ-CPE solid electrolytes.

Fig. S11. FE-SEM image of (a) 5% MZ-CPE, and EDX mapping of 5% MZ-CPE for (b) C, (c) Si, (d) O, (e) Al, (f) S, and (g) F elements.

Fig. S12. SEM image (a) SPE, and EDX mapping of SPE for (b) C, (c) O, (d) S, and (e) F elements.

Fig. S13. XRD patterns of SSZ-13, M-SSZ-13, PEO and LiTFSI from 10^o to 90^o.

Fig. S14. (a) FTIR spectra of SPE, 5% MZ-CPE, 10% MZ-CPE, 15% MZ-CPE and 20% MZ-CPE between 650–3900 cm⁻¹, (b) FTIR spectra of SSZ-13, M-SSZ-13, PEO and LiTFSI between 650–3900 cm⁻¹, and (c) Magnified FTIR spectra of SSZ-13 and M-SSZ-13 in the range of 1303–1959 cm⁻¹.

Fig. S15. Derived weight vs. temperature curves for PEO, 10% MZ-CPE, 15% MZ-CPE and 20% MZ-CPE in the temperature range of 250 - 600 °C.

Fig. S16. DSC and TGA curves of PEO in the temperature ranges of -50 °C – 150 °C and 25 – 600 °C, respectively. All analysis is made under the flow of N_2 along with heating ramp-rate of 10 °C/min.

Fig. S17. (a-c) Optical images of symmetrical coin cell [Li|5% MZ-CPE|Li] after the activation @70 °C for 2 h. The 5% MZ-CPE very strongly attached with Li-metal.

Fig. S18. VTF fitting results [between $log(\sigma.T^{1/2})_{VS.} \frac{1}{(T-T_0)}$] for determination of the activation energy of SPE and MZ-CPEs (5%, 10%, 15%, and 20%).

Fig. S19. Current-time profile of (a) SPE for Li symmetric batteries [Li|SPE|Li] @60 °C (Inset: Nyquist plots before and after polarization) and (b) 5% CPE for Li symmetric batteries [Li|5% CPE|Li] @60 °C (Inset: Nyquist plots before and after polarization).

Fig. S20. Comparison of cycling performance of 5% CPE with the cell structure of [Li|5% CPE|LFP] (@60 °C), liquid electrolyte with cell structure of [Li|liquid electrolyte|LFP] (@30 °C) and SPE with cell structure of [Li|SPE|LFP] (@60 °C) at the discharge current density of 0.1 C.

Fig. S21. Cycling performance of 5% MZ-CPE with cell structure of [Li|5% MZ-CPE|NCA] at the discharge current density of 0.1 C (@60 °C).

References

- [1] Shalu, V. K. Singh and R. K. Singh, J. Mater. Chem. C, 2015, **3**, 7305–7318.
- [2] S. K. Chaurasia, A. L. Saroj, Shalu, V. K. Singh, A. K. Tripathi, A. K. Gupta, Y. L. Verma and R. K. Singh, AIP Adv, 2015, **3**, 077178.
- [3] D. M. Pesko, Y. Jung, A. L. Hasan, M. A. Webb, G. W. Coates, T. F. Miller and N. P. Balsara, Solid State Ionics, 2016, 289, 118–124.
- [4] C. Zhang, Y. Lin and J. Liu, J. Mater. Chem. A, 2015, **3**, 10760–10766.
- [5] W. Zhou, H. Gao and J. B. Goodenough, Adv. Energy Mater, 2016, 6, 1501802– 1501810.
- [6] D. Lin, W. Liu, Y. Liu, H. R. Lee, P. C. Hsu, K. Liu and Y. Cui, Nano Lett., 2016, 16, 459–465.
- [7] J. Zhang, N. Zhao, M. Zhang, Y. Li, P. K. Chu, X. Guo, Z. Di, X. Wang and H. Li, Nano Energy, 2016, 28, 447–454.
- [8] O. Sheng, C. Jin, J. Luo, H. Yuan, C. Fang, H. Huang, Y. Gan, J. Zhang, Y. Xia, C. Liang, W. Zhang and X. Tao, J. Mater. Chem. A, 2017, 5, 12934–12942.
- [9] W. Li, S. Zhang, B. Wang, S. Gu, D. Xu, J. Wang, C. Chen and Z. Wen, ACS Appl. Mater. Interfaces, 2018, 10, 23874–23882.
- [10] W. Zha, F. Chen, D. Yang, Q. Shen and L. Zhang, J. Power Sources, 2018, 397, 87–94.
- [11] H. Yuan, J. Luan, Z. Yang, J. Zhang, Y. Wu, Z. Lu and H. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 7249–7256.