SUPPLEMENTARY INFORMATION

Computational Modeling Predicts the Stability of Both $\mathbf{P d}^{+}$and $\mathbf{P d}^{2+}$ Ion-Exchanged into $\mathbf{H - C H A}$

Jeroen Van der Mynsbrugge ${ }^{\mathrm{a}}$, Martin Head-Gordon ${ }^{\mathrm{b}}$ and Alexis T. Bell ${ }^{\text {a* }}$
${ }^{\text {a Department of Chemical and Biomolecular Engineering }}$
University of California, Berkeley, CA 94720, USA
${ }^{\mathrm{b}}$ Department of Chemistry
University of California, Berkeley, CA 94720, USA

Submitted to
Journal of Materials Chemistry A
(Date)
*To whom correspondence should be addressed: alexbell@berkeley.edu

1 Configurational search

Figure S1 illustrates the existence of various chemically equivalent but structurally different configurations for the $\mathrm{H}^{+}, \mathrm{Pd}^{0} \mathrm{H}^{+}$and Pd^{+}species at isolated Al atoms, and for $\mathrm{H}^{+} / \mathrm{H}^{+}, \mathrm{Pd}^{0} \mathrm{H}^{+} / \mathrm{H}^{+}$, $\mathrm{Pd}^{+} / \mathrm{H}^{+}$and Pd^{2+} species at the proximate Al pairs. For a given Al , three of its adjacent oxygen atoms are accessible from the CHA cage. The charge compensating H^{+}(and therefore the coordinating Pd in $\mathrm{Pd}^{0} \mathrm{H}^{+}$) can be located in three different positions. Similarly, Pd^{+}can assume two different orientations, facing either the 6 -ring or an adjacent 8 -ring. While the configuration of Pd^{2+} is trivial, as it is expected to be located near the center of the 6 -ring shared by the Al pair responsible for the counter charge, this is not the case for any of the other species. To identify the lowest-free energy structure for each of $\mathrm{H}^{+}, \mathrm{Pd}^{0} \mathrm{H}^{+}$and Pd^{+}species at isolated Al atoms, and for $\mathrm{H}^{+} / \mathrm{H}^{+}, \mathrm{Pd}^{0} \mathrm{H}^{+} / \mathrm{H}^{+}, \mathrm{Pd}^{+} / \mathrm{H}^{+}$and Pd^{2+} species at the proximate Al pairs in the 6 -ring, we have examined all of the configurations that are schematically represented in Figure S1. Their relative free energies are shown in Table S1.

Figure S1. Schematic representation of the various chemically equivalent but structurally different configurations for $\mathrm{Pd}^{\mathrm{n+}}(\mathrm{n}=0,1,2)$ sites at isolated Al and proximate Al pairs in the 6 -ring in CHA.

Table S1. Relative free energies (in $\mathrm{kJ} / \mathrm{mol}$) of the various chemically equivalent but structurally different configurations for $\mathrm{Pd}^{\mathrm{n}+}(\mathrm{n}=0,1,2)$ sites at isolated Al and proximate Al pairs in the 6-ring in CHA. LOT: ω B97X-D/def2-tzvpd // ω B97X-D/def2-sv(p); T=300 K, $\mathrm{P}=\mathrm{P}_{\mathrm{atm}}$.

	Isolated Al
$\mathbf{H Z}$	
h1	0
h2	+1
h3	+11
Pd $^{0} \mathbf{H Z}$	0
h1-pd01	+5
h2-pd02	+9
h3-pd03	
Pd $^{+} \mathbf{Z}$	
pd11	0
pd12	+7
HZ HZ	+22
h1-h4	+35
h1-h5	+20
h1-h6	+44
h2-h4	0
h2-h5	+37
h2-h6	+40
h3-h4	+23
h3-h5	+49
h3-h6	
Pd ${ }^{0}$ HZ HZ	+3
h1-h4-pd01	+3
h1-h4-pd04	0
h1-h5-pd01	+24
h1-h5-pd05	+8
h1-h6-pd01	+15
h1-h6-pd06	+37
h2-h4-pd02	+21
h2-h4-pd04	+4
h2-h5-pd02	+34
h2-h5-pd05	
h2-h6-pd02	
h2-h6-pd06	

h3-h4-pd03	+34
h3-h4-pd04	+32
h3-h5-pd03	+8
h3-h5-pd05	+26
h3-h6-pd03	+41
h3-h6-pd06	+37
$\mathbf{P d}^{+} \mathbf{Z}^{-} \mathbf{H Z}$	
h1-pd13	+43
h1-pd14	+48
h2-pd13	+50
h2-pd14	+48
h3-pd13	+38
h3-pd14	+68
h4-pd11	+75
h4-pd12	+69
h5-pd11	0
h5-pd12	+36
h6-pd11	+39
h6-pd12	+73
NNNN Al pair	
HZ HZ	
h1-h4	+44
h1-h7	0
h1-h8	+20
h2-h4	0
h2-h7	+34
h2-h8	+26
h3-h4	+21
h3-h7	+26
h3-h8	+41
$\mathbf{P d}^{0} \mathrm{HZ} \mathrm{HZ}$	
h1-h4-pd01	+16
h1-h4-pd04	+15
h1-h7-pd01	0
h1-h7-pd07	+13
h1-h8-pd01	+20
h1-h8-pd08	+20
h2-h4-pd02	+13
h2-h4-pd04	+2
h2-h7-pd02	+39

h2-h7-pd07	+41
h2-h8-pd02	+38
h2-h8-pd08	+34
h3-h4-pd03	+20
h3-h4-pd04	+20
h3-h7-pd03	+35
h3-h7-pd07	+43
h3-h8-pd03	+45
h3-h8-pd08	+44
Pd Z- HZ	+38
h1-pd15	+14
h1-pd16	0
h2-pd15	+37
h2-pd16	+4
h3-pd15	+42
h3-pd16	+37
h4-pd11	+15
h4-pd12	+1
h7-pd11	+36
h7-pd12	+4
h8-pd11	+42
h8-pd12	

2 Characteristic Pd-O distances for $\mathrm{Pd}^{2+}, \mathrm{Pd}^{+} \mathrm{H}^{+}$and $[\mathrm{Pd}-\mathrm{O}-\mathrm{Pd}]^{2+}$

Table S2 compares the characteristic Pd-O distances in our model structures for $\mathrm{Pd}^{2+}, \mathrm{Pd}^{+} \mathrm{H}^{+}$and $[\mathrm{Pd}-\mathrm{O}-\mathrm{Pd}]^{2+}$ at the NNNN Al pair in the 6-ring with those reported by Khivantsev et al. (ref. 17 in the main text) and Paolucci et al. (ref. 26 in the main text), showing excellent agreement despite the use of different computational methods.

Table S2. Comparison of the characteristic Pd-O distances in our model structures for $\mathrm{Pd}^{2+}, \mathrm{Pd}^{+} \mathrm{H}^{+}$and $[\mathrm{Pd}-\mathrm{O}-$ $\mathrm{Pd}]^{2+}$ at the NNNN Al pair in the 6-ring with those in similar structures reported by Khivantsev et al. (ref. 17 in the main text) and Paolucci et al. (ref. 26 in the main text).

		$\mathbf{d}\left(\mathbf{P d}-\mathrm{O}_{\text {zeo }}\right)\left[\AA{ }^{\text {a }}\right.$]	
	This study	Khivantsev et al. ${ }^{17}$	Paolucci et al. ${ }^{32}$
$\mathbf{P d}^{2+}$	2.04; 2.04; 2.11; 2.11	2.06; 2.06; 2.14; 2.14	2.04; 2.04; 2.11; 2.11
Pd^{+}	2.23; 2.30; 2.33; 2.33	2.20; 2.22; 2.25	2.18-2.38
[Pd-O-Pd] ${ }^{2+}$	2.10; 2.17; 2.11; 2.18	2.14; 2.19; 2.14; 2.19	

3 Validation of the QM region selections

To validate our choice of QM regions used to model Pd sites at the different proximate Al pairs in the 6-ring or 8-ring, additional test calculations were performed using the larger QM regions shown in Figure S2, which include the full 6-ring and 8-ring for all Al pairs. To ensure that the salient observations discussed in the main text are unaffected if only the ring in which both Al atoms are located is treated at the QM level, we have reoptimized the structures of $\mathrm{Pd}^{+} \mathrm{H}^{+} \mathrm{Z}^{-} \mathrm{Z}^{-}$and $\mathrm{Pd}^{2+} \mathrm{Z}^{-} \mathrm{Z}^{-}$ using the alternative QM regions and evaluated the effect of the QM region on the energies of formation of $\mathrm{Pd}^{+} \mathrm{H}^{+} \mathrm{Z}^{-} \mathrm{Z}^{-}$and $\mathrm{Pd}^{2+} \mathrm{Z}^{-} \mathrm{Z}^{-}$, which were ultimately found to be the most favorable species over a wide range of operating conditions for all Al pairs. The results of these calculations are shown in Figure S3 and Table S2. The same trends are obtained regardless of the QM region,
and crucially the difference in formation energy between $\mathrm{Pd}^{+} \mathrm{H}^{+} \mathrm{Z}-\mathrm{Z}^{-}$and $\mathrm{Pd}^{2+} \mathrm{Z}^{-} \mathrm{Z}^{-}$is reproduced within $12 \mathrm{~kJ} / \mathrm{mol}$ or less (Table S2).
∞

NNNN(8R)

NNNNN(8R)

Figure S2. Alternative QM regions including both the 6-ring and the 8-ring for different proximate Al pairs in the 6 -ring (NNN and NNNN) or 8 -ring ($\mathrm{NNN}, \mathrm{NNNN}$ and NNNNN). Si atoms are shown in cyan, Al in pink, O in red, H in white

Figure S3. Formation energies of $\mathrm{Pd}^{+} \mathrm{H}^{+} \mathrm{Z}^{-} \mathrm{Z}^{-}$and $\mathrm{Pd}^{2+} \mathrm{Z}^{-} \mathrm{Z}^{-}$at the different Al pairs in the 6-ring or 8-ring, evaluated at the ω B97X-D/def2-tzvpd $/ / \omega$ B97X-D/def2-sv(p) level of theory using the QM regions shown in Figure 1 in the main text (QMMM1) and using the alternative QM regions shown in Figure S2 (QMMM2).

Table S2. Differences in formation energies of $\mathrm{Pd}^{+} \mathrm{H}^{+} \mathrm{Z}^{-} \mathrm{Z}^{-}$and $\mathrm{Pd}^{2+} \mathrm{Z}^{-} \mathrm{Z}^{-}$at the different Al pairs in the 6-ring or 8-ring, evaluated at the ω B97X-D/def2-tzvpd $/ / \omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / \mathrm{def} 2-\mathrm{sv}(\mathrm{p})$ level of theory using the QM regions shown in Figure 1 in the main text (QMMM1) and using the alternative QM regions shown in Figure S2 (QMMM2).

	$\Delta \Delta \mathbf{E}_{\text {form }}\left(\mathbf{P d}^{+} \mathbf{H}^{+} \mathbf{Z}^{-} \mathbf{Z}^{-}-\mathbf{P d}^{2+} \mathbf{Z}^{-\mathbf{Z}^{-}}\right)$			
	QMMM1 $\mathrm{kJ} / \mathrm{mol}$	QMMM2 $\mathrm{kJ} / \mathrm{mol}$	\|QMMM1 - QMMM2	$\mathrm{kJ} / \mathrm{mol}$
NNN(6R)	-50	-47	3	
NNNN(6R)	58	70	12	
NNN(8R)	-39	-34	5	
NNNN(8R)	-165	-173	8	
NNNNN(8R)	-199	-209	10	

4 Validation of the density functional selection

Additionally, we have evaluated the energies of formation of $\mathrm{Pd}^{+} \mathrm{H}^{+} \mathrm{Z}^{-} \mathrm{Z}^{-}$and $\mathrm{Pd}^{2+} \mathrm{Z}^{-} \mathrm{Z}^{-}$using the wB97M-V functional to refine the energies of the structures of $\mathrm{Pd}^{+} \mathrm{H}^{+} \mathrm{Z}^{-} \mathrm{Z}^{-}$and $\mathrm{Pd}^{2+} \mathrm{Z}^{-} \mathrm{Z}^{-}$obtained with the QM regions shown in Figure 1 in the main text to assess the effect of our choice of density functional. The results of these calculations are shown in Figure S4 and Table S3. Again, the same trends are obtained with either functional, and the difference in formation energy between $\mathrm{Pd}^{+} \mathrm{H}^{+} Z^{-}$ Z^{-}and $\mathrm{Pd}^{2+} \mathrm{Z}^{-} \mathrm{Z}^{-}$is reproduced within $9 \mathrm{~kJ} / \mathrm{mol}$ or less (Table S 3).

Figure S4. Formation energies of $\mathrm{Pd}^{+} \mathrm{H}^{+} \mathrm{Z}^{-} \mathrm{Z}^{-}$and $\mathrm{Pd}^{2+} \mathrm{Z}^{-} \mathrm{Z}^{-}$at the different Al pairs in the 6 -ring or 8 -ring, evaluated using the QM regions shown in Figure 1 in the main text at the ω B97X-D/def2-tzvpd // ω B97X-D/def2-sv(p) level of theory (QMMM1) and at the ω B97M-V/def2-tzvpd // ω B97X-D/def2-sv(p) level of theory (QMMM3).

Table S3. Differences in formation energies of $\mathrm{Pd}^{+} \mathrm{H}^{+} \mathrm{Z}^{-} \mathrm{Z}^{-}$and $\mathrm{Pd}^{2+} \mathrm{Z}^{-} \mathrm{Z}^{-}$at the different Al pairs in the 6 -ring or 8 -ring, evaluated using the QM regions shown in Figure 1 in the main text at the ω B97X-D/def2-tzvpd // ω B97X-D/def2-sv(p) level of theory (QMMM1) and at the ω B97M-V/def2-tzvpd // ω B97X-D/def2-sv(p) level of theory (QMMM3).

		$\Delta \mathbf{E}_{\text {form }}\left(\mathbf{P d}^{+} \mathbf{H}^{+} \mathbf{Z}^{-} \mathbf{Z}^{-}-\mathbf{P d}^{2+} \mathbf{Z}^{-} \mathbf{Z}^{-}\right)$	
	QMMM1	QMMMM3	\mid QMMM1 - QMMMM3\|
	$\mathrm{kJ} / \mathrm{mol}$	$\mathrm{kJ} / \mathrm{mol}$	$\mathrm{kJ} / \mathrm{mol}$
NNN(6R)	-50	-46	4
NNNN(6R)	58	64	7
NNN(8R)	-39	-32	7
NNNN(8R)	-165	-156	9
NNNNN(8R)	-199	-193	6

Figure S5. Electronic energies of formation $\left(\Delta \mathrm{E}_{\text {form }}\right)$ for the Pd species in both the 6 -ring $\left(\Delta \mathrm{G}_{\text {form }}\right.$ in Figure 4 of main text) and in the 8-ring $\left(\Delta \mathrm{G}_{\text {form }}\right.$ in Figure 8 of main text).

5 Phase diagrams

Figure S6. $\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}, \mathrm{T}\right]$ phase diagrams showing the thermodynamically preferred Pd species (top row; Figure 5 in the main text) and corresponding heat maps (bottom row) illustrating the difference in free energy of formation (in $\mathrm{kJ} / \mathrm{mol}$) between the thermodynamically preferred Pd species and the species with the next-lowest free energy at isolated Al and Al pairs - next-next-nearest neighbors (NNNN) and next-nearest neighbors (NNN) - in the 6ring of H-CHA under flowing air ($\mathrm{p}_{\mathrm{O} 2}=20 \mathrm{kPa}$).

Figure S7. [$\left.\mathrm{P}_{\mathrm{O} 2}, \mathrm{~T}\right]$ phase diagrams showing the thermodynamically preferred Pd species (top row) and corresponding heat maps (bottom row) illustrating the difference in free energy of formation (in $\mathrm{kJ} / \mathrm{mol}$) between the thermodynamically preferred Pd species and the species with the next-lowest free energy at isolated Al and Al pairs - next-next-nearest neighbors (NNNN) and next-nearest neighbors (NNN) - in the 6-ring of H-CHA under oxidizing conditions with 5% water $\left(\mathrm{p}_{\mathrm{H} 2 \mathrm{O}}=5 \mathrm{kPa}\right)$.

Figure S8. $\left[\mathrm{P}_{\mathrm{H} 2}, \mathrm{~T}\right]$ phase diagrams showing the thermodynamically preferred Pd species (top row; Figure 7 in the main text) and corresponding heat maps (bottom row) illustrating the difference in free energy of formation (in $\mathrm{kJ} / \mathrm{mol}$) between the thermodynamically preferred Pd species and the species with the next-lowest free energy at isolated Al and Al pairs - next-next-nearest neighbors (NNNN) and next-nearest neighbors (NNN) - in the 6ring of H-CHA under dry reducing conditions $\left(\mathrm{p}_{\mathrm{H} 2 \mathrm{O}}=0.01 \mathrm{~Pa}\right)$.

Figure S9. $\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}, \mathrm{T}\right]$ phase diagrams showing the thermodynamically preferred Pd species (top row; Figure 9 in the main text) and corresponding heat maps (bottom row) illustrating the difference in free energy of formation (in $\mathrm{kJ} / \mathrm{mol}$) between the thermodynamically preferred Pd species and the species with the next-lowest free energy at next-nearest neighbors (NNN), next-next-nearest neighbors (NNNN), next-next-next-nearest neighbors (NNNNN) Al pairs in the 8 -ring of $\mathrm{H}-\mathrm{CHA}$ under flowing air $\left(\mathrm{p}_{\mathrm{O} 2}=20 \mathrm{kPa}\right)$.

6 Alternative 3D representations of select structures

Because of the nature of the CHA (a dense 3D network of interconnected cages) it is difficult to show the active sites in their framework context in a single 2D representation without confusing the reader. For this reason, we have opted to omit the MM atoms in the Figures included in the manuscript. Below are a few additional figures showing an alternative representation for a selection of structures. The QM atoms are shown in ball-and-stick representation; the remaining atoms of the central cha cage are shown as a bolder wireframe for visual clarity (as in Figure 1 in the main text).

7 XYZ coordinates of all stationary points

See ZIP archive; QM atoms are grouped at the top of each geometry.

Description	Filename	\# QM atoms
isolated Al		
HZ	001.xyz	17
$\mathrm{Pd}^{0} \mathrm{HZ}$	002.xyz	18
$\mathrm{Pd}_{2}{ }^{0} \mathrm{HZ}$	003.xyz	19
$\mathrm{Pd}_{3}{ }^{0} \mathrm{HZ}$	004.xyz	20
$\mathrm{Pd}_{4}{ }^{0} \mathrm{HZ}$	005.xyz	21
$\mathrm{Pd}^{+} \mathrm{Z}^{-}$	006.xyz	17
$\mathrm{Pd}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	007.xyz	20
$\mathrm{Pd}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	008.xyz	23
$\mathrm{PdOH}^{+} \mathrm{Z}^{-}$	009.xyz	19
$N N N(6 R)$		
HZ HZ	010.xyz	22
HZ Pd ${ }^{0} \mathrm{HZ}$	011.xyz	23
$\mathrm{HZPd}_{2}{ }^{0} \mathrm{HZ}\left(\mathrm{Z}^{-} \mathrm{Pd}_{2} \mathrm{H}^{+} \mathrm{HZ}\right)$	012.xyz	24
$\mathrm{HZ} \mathrm{Pd}{ }_{3}{ }^{0} \mathrm{HZ}$	013.xyz	25
$\mathrm{HZ} \mathrm{Pd}{ }_{4}{ }^{0} \mathrm{HZ}$	014.xyz	26
$\mathrm{HZ} \mathrm{Pd}^{+} \mathrm{Z}^{-}$	015.xyz	22
HZ Pd ${ }^{+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	016.xyz	25
$\mathrm{HZ} \mathrm{Pd}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	017.xyz	28
$\mathrm{Z}-\mathrm{Pd}^{+} \mathrm{Pd}^{+} \mathrm{Z}^{-}$	018.xyz	22
Z- $\mathrm{Pd}^{2+} \mathrm{Z}^{-}$	019.xyz	21
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	020.xyz	24
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	021.xyz	27
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Z}^{-}$	022.xyz	30
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Z}^{-}$	023.xyz	33
$\mathrm{HZ} \mathrm{PdOH}{ }^{+} \mathrm{Z}^{-}$	024.xyz	24
$\mathrm{Z}^{-}(\mathrm{PdOH})_{2}{ }^{2+} \mathrm{Z}^{-}$	025.xyz	26
Z^{-}(Pd-O-Pd) ${ }^{2+} \mathrm{Z}^{-}$	026.xyz	23
NNNN(6R)		
HZ HZ	027.xyz	22
HZ Pd ${ }^{0} \mathrm{HZ}$	028.xyz	23
$\mathrm{HZPd}_{2}{ }^{0} \mathrm{HZ}$	029.xyz	24
$\mathrm{HZ} \mathrm{Pd}{ }_{3}{ }^{0} \mathrm{HZ}$	030.xyz	25
$\mathrm{HZ} \mathrm{Pd}{ }_{4}{ }^{\text {a }} \mathrm{HZ}$	031.xyz	26
HZ Pd ${ }^{+} \mathrm{Z}^{-}$	032.xyz	22
HZ Pd ${ }^{+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	033.xyz	25
$\mathrm{HZ} \mathrm{Pd}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	034.xyz	28

$\mathrm{Z}-\mathrm{Pd}^{+} \mathrm{Pd}^{+} \mathrm{Z}^{-}$	035.xyz	22
$\mathrm{Z}^{-} \mathrm{Pd}^{2+} \mathrm{Z}^{-}$	036.xyz	21
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	037.xyz	24
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	038.xyz	27
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Z}^{-}$	039.xyz	30
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Z}^{-}$	040.xyz	33
$\mathrm{HZ} \mathrm{PdOH}^{+} \mathrm{Z}^{-}$	041.xyz	24
$\mathrm{Z}^{-}(\mathrm{PdOH})_{2}{ }^{2+} \mathrm{Z}^{-}$	042.xyz	26
$\mathrm{Z}^{-}(\mathrm{Pd}-\mathrm{O}-\mathrm{Pd})^{2+} \mathrm{Z}^{-}$	043.xyz	23
NNN(8R)		
HZ HZ	044.xyz	26
HZ Pd ${ }^{+} \mathrm{Z}^{-}$	045.xyz	26
HZ Pd ${ }^{+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	046.xyz	29
HZ $\mathrm{Pd}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	047.xyz	32
Z- $\mathrm{Pd}^{2+} \mathrm{Z}^{-}$	048.xyz	25
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	049.xyz	28
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	050.xyz	31
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Z}^{-}$	051.xyz	34
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Z}^{-}$	052.xyz	37
HZ $\mathrm{PdOH}^{+} \mathrm{Z}^{-}$	053.xyz	28
$\mathrm{Z}^{-}(\mathrm{PdOH})_{2}{ }^{2+} \mathrm{Z}^{-}$	054.xyz	30
$\mathrm{Z}^{-}(\mathrm{Pd}-\mathrm{O}-\mathrm{Pd})^{2+} \mathrm{Z}^{-}$	055.xyz	27
NNNN(8R)		
HZ HZ	056.xyz	26
HZ Pd ${ }^{+} \mathrm{Z}^{-}$	057.xyz	26
HZ Pd ${ }^{+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	058.xyz	29
HZ Pd ${ }^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	059.xyz	32
Z- $\mathrm{Pd}^{2+} \mathrm{Z}^{-}$	060.xyz	25
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	061.xyz	28
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	062.xyz	31
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Z}^{-}$	063.xyz	34
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Z}^{-}$	064.xyz	37
$\mathrm{HZ} \mathrm{PdOH}^{+} \mathrm{Z}^{-}$	065.xyz	28
$\mathrm{Z}^{-}(\mathrm{PdOH})_{2}{ }^{2+} \mathrm{Z}^{-}$	066.xyz	30
$\mathrm{Z}^{-}(\mathrm{Pd}-\mathrm{O}-\mathrm{Pd})^{2+} \mathrm{Z}^{-}$	067.xyz	27
NNNNN(8R)		
HZ HZ	068.xyz	26
HZ Pd ${ }^{+} \mathrm{Z}^{-}$	069.xyz	26
$\mathrm{HZ} \mathrm{Pd}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	070.xyz	29
HZ Pd ${ }^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	071.xyz	32
Z- $\mathrm{Pd}^{2+} \mathrm{Z}^{-}$	072.xyz	25
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Z}^{-}$	073.xyz	28

$Z^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Z}^{-}$	$074 . \mathrm{xyz}$	31
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Z}^{-}$	$075 . \mathrm{xyz}$	34
$\mathrm{Z}^{-} \mathrm{Pd}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Z}^{-}$	$076 . \mathrm{xyz}$	37
$\mathrm{HZ} \mathrm{PdOH}^{+} \mathrm{Z}^{-}$	$077 . x y z$	28
$\mathrm{Z}^{-}(\mathrm{PdOH})_{2}^{2+} \mathrm{Z}^{-}$	$078 . \mathrm{xyz}$	30
$\mathrm{Z}^{-}(\mathrm{Pd}-\mathrm{O}-\mathrm{Pd})^{2+} \mathrm{Z}^{-}$	$079 . x y z$	27

