Supporting Information for

Large electrocaloric response with superior temperature stability in NaNbO₃based relaxor ferroelectrics benefiting from crossover region

Ling Zhang, Chunlin Zhao, Ting Zheng and Jiagang Wu*

Department of Materials Science, Sichuan University, Chengdu, 610064, China

*Corresponding author. Email: msewujg@scu.edu.cn and wujiagang0208@163.com

Sample	<i>x</i> =0.04		<i>x</i> = 0.05
Space group	P4mm (35.3%)	R3c (64.7%)	Pm-3m
a (Å)	3.9459	5.5903	3.9492
c (Å)	3.9421	-	-
α (°)	90	90.02	90
Sig	1.34		1.86
R _{wp} (%)	5.27		7.43
c/a	1.001		1

Table S1: Lattice parameters and refined structure parameters of NN-BT-*x*BZ ceramics.

Fig. S1. *P*-*E* loops for NN-0.1BT-*x*BZ ceramics with (a) x = 0.03, (b) 0.035, (c) 0.04, (d) 0.45, (d) 0.05, and (f) 0.055 recorded under 40 kV/cm at several selected temperatures.

Fig. S2. *P-T* loops for NN-0.1BT-*x*BZ ceramics with (a) x = 0.03, (b) 0.035, (c) 0.04, (d) 0.45, (d) 0.05, and (f) 0.055 at 10-40 kV/cm, where *P* is obtained from the P_{max} in each *P-E* loop.

Fig. S3. Plots of $(\partial P/\partial T)_{\rm E}$ -*T* for NN-0.1BT-*x*BZ ceramics with (a) x = 0.03, (b) 0.035, (c) 0.04, (d) 0.45, (d) 0.05, and (f) 0.055 at 10-40 kV/cm.