Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Migration of Cations in Layered Oxides for Creating Highly Active

Interface toward CO Preferential Oxidation

Junfang Ding[†], Zhibin Geng[†], Liping Li[†], Ye Wang[†], Ying Zuo[‡], Huixia, Li[†], Min

Yang^{\dagger}, and Guangshe Li^{*, \dagger}

[†]State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of

Chemistry, Jilin University, Changchun 130012, P.R. China

[‡]Scientific Instrument Center, Shanxi University, Shanxi 030006, P.R. China

*E-mail: guangshe@jlu.edu.cn.

Table of Contents

No.	Details				
1	Figure S1 XRD patterns of the precursors $CuCoO_2$ (a) and CeO_2 (c); SEM image of $CuCoO_2$ (b); and TEM image of CeO_2 (d). Inset is SEM image of CeO_2 .				
2	Figure S2 XRD patterns of the given samples along with the standard diffraction data for CeO_2 (JCPDS No. 34-0394) and for $CuCoO_2$ (JCPDS No. 74-1855).				
3	Figure S3 (a) N_2 adsorption-desorption isotherms and (b) pore size distributions of samples.				
4	Figure S4 SEM images of the samples: (a) 10% CeO ₂ -CuCoO ₂ ; (b) 30% CeO ₂ -CuCoO ₂ ; (c) 50% CeO ₂ -CuCoO ₂ ; (d) 70% CeO ₂ -CuCoO ₂ ; and (e) 90% CeO ₂ -CuCoO ₂ .	S-7			
5	Figure S5. (a) TEM image, (b) enlarged images of Figure a, (c) corresponding elemental mapping analysis in the area of (a), and HRTEM image of 10%CeO ₂ -CuCoO ₂ .				
6	Figure S6. (a) TEM image, (b) enlarged images of Figure a, (c) HRTEM image, and FFT pattern in the rectangle region I, II of (c) for 30%CeO ₂ -CuCoO ₂ .				
7	Figure S7. (a) TEM image, (b) enlarged images of Figure a, (c) HRTEM image, and FFT pattern in the rectangle region I of (c) for 50%CeO ₂ -CuCoO ₂ .	S-10			
8	Figure S8 (a) TEM image, and (b) HRTEM image of 90%CeO ₂ -CuCoO ₂ , FFT pattern in the rectangle region.	S-11			
9	Figure S9 XPS survey scans of the samples: (a) 10% CeO ₂ -CuCoO ₂ ;(b) 30% CeO ₂ -CuCoO ₂ ; (c) 50% CeO ₂ -CuCoO ₂ ; (d) 70% CeO ₂ -CuCoO ₂ ; and (e) 90% CeO ₂ -CuCoO ₂ .	S-12			
10	Figure S10 FT-IR spectra for all samples.	S-13			
11	Figure S11 XPS spectra of the Cu 2 <i>p</i> for samples.	S-14			
12	Figure S12 Auger spectra (Cu LMM peak) of the samples: (a) 10% CeO ₂ -CuCoO ₂ ; (b) 30% CeO ₂ -CuCoO ₂ ; (c) 50% CeO ₂ -CuCoO ₂ ; (d) 70% CeO ₂ -CuCoO ₂ ; and (e) 90% CeO ₂ -CuCoO ₂ .	S-15			
13	Figure S13 XPS spectra of the Co 2 <i>p</i> for samples.	S-16			
14	Figure S14 CO_2 selectivity for the samples with varied CeO_2 content.	S-17			
15	Figure S15 Reaction rates of the samples under CO-PROX conditions at 100 °C.	S-18			

16	Table S1 Comparison of catalytic performance in CO-PROX over70%CeO2-CuCoO2 and those catalysts reported in literatures.					
17	Figure S16 Selectivity to CO_2 as a function of CO conversion for given samples.					
18	Figure S17 CO conversion (a) and CO ₂ selectivity (b) of 70%CeO ₂ -CuCoO ₂ sample in the presence of CO ₂ and H ₂ O.	S-21				
19	Figure S18 CO ₂ selectivity for given samples.	S-22				
20	Figure S19 CO ₂ (CO) methanation over the given samples at 220 °C and 240 °C.	S-23				
21	Figure S20 DRIFTS spectra obtained for sample 50% CeO ₂ -CuCoO ₂ at given temperatures under CO-PROX conditions (1% CO, 1.25% O ₂ and 50% H ₂ in He).	S-24				
22	References	S-25				

Figure S1 XRD patterns of the precursors $CuCoO_2$ (a) and CeO_2 (c); SEM image of $CuCoO_2$ (b); and TEM image of CeO_2 (d). Inset is SEM image of CeO_2 .

As shown in Figure S1a, the synthesized precursors contain the majority of rhombohedral (3R) delafossite $CuCoO_2$ phase (indicated as an open square) and small amount of un-known impurity phase (an asterisk). The diffraction peaks at two theta of 28.6°, 33.2°, 47.5°, and 56.7° are attributed to the planes (111), (002), (022), and (113) of CeO₂ in a cubic fluorite structure, respectively. CuCoO₂ mainly composed of hexagonal plates and fragmented particles. The morphology of CeO₂ is rough spherical at a diameter about 6-7 nm, which agrees with the XRD data analysis.

Figure S2 XRD patterns of the given samples along with the standard diffraction data for CeO₂ (JCPDS No. 34-0394) and for CuCoO₂ (JCPDS No. 74-1855).

For 10% CeO₂-CuCoO₂ sample as shown in Figure S2, the diffraction peaks were substantially the same as the precursors, except for both weak peaks at 20 of 28.554° and 47.478° that are attributed to (111) and (220) crystalline planes of cubic-phase CeO₂ (JCPDS No. 34-0394), confirming that 10% CeO₂-CuCoO₂ is mainly composed of CuCoO₂ with a small amount of CeO₂. In XRD patterns of 30% CeO₂-CuCoO₂ and 50% CeO₂-CuCoO₂, the intensities of the characteristic peaks of cubic-phase CeO₂ became stronger with the appearance of the peak located at 56.085° assigned to (222) crystalline planes of cubic-phase CeO₂, corresponding to the higher mass fraction of CeO₂ in the as-prepared catalysts. When the content of CeO₂ grew higher to 70%, it can be clearly seen that the intensities of 90% CeO₂-CuCoO₂, peaks of CuCoO₂ were almost invisible, demonstrating the extremely low content of CuCoO₂.

Figure S3 (a) N_2 adsorption-desorption isotherms and (b) pore size distributions of samples.

The specific surface area and the corresponding Barrett-Joyner-Halenda (BJH) pore size distributions of the as-prepared samples were investigated by N2 adsorptiondesorption isotherms. As shown in Figure S3, all samples exhibited IV type isotherms with a H3 representative hysteresis loop, suggesting that the pores were mainly caused by the accumulation of small nanoparticles. From Table 1, it can be seen that with the increase of CeO_2 content, the surface areas of samples increase gradually. This observation can be explained in terms of a small size effect because the particle size of CeO₂ component is only about 6 nm. Meanwhile, BJH pore volume is also enhanced with CeO₂ content, and it is summarized in Table 1. The pore size distribution calculated from the desorption branch of the samples is presented in Figure 3b. The samples of 10%CeO₂-CuCoO₂ and 30%CeO₂-CuCoO₂ were mainly mesopores located at about 20-40 nm which was formed from the surface wall. The peaks of mesopore size distribution of 50%CeO2-CuCoO2, 70%CeO2-CuCoO2 and 90%CeO₂-CuCoO₂ shifted toward smaller pore width when compared with above two samples, which was due to the fact that the content of CeO₂ increased slightly and crystal grains of CeO₂ is much smaller than CuCoO₂. This observation is in good agreement with adsorption-desorption isotherms, SEM and TEM results.

Figure S4 SEM images of the samples: (a) 10%CeO₂-CuCoO₂; (b) 30%CeO₂-CuCoO₂; (c) 50%CeO₂-CuCoO₂; (d) 70%CeO₂-CuCoO₂; and (e) 90%CeO₂-CuCoO₂.

Figure S5. (a) TEM image, (b) enlarged images of Figure a, (c) corresponding elemental mapping analysis in the area of (a), and HRTEM image of 10%CeO₂-CuCoO₂.

Figure S6. (a) TEM image, (b) enlarged images of Figure a, (c) HRTEM image, and FFT pattern in the rectangle region I, II of (c) for 30%CeO₂-CuCoO₂.

Figure S7. (a) TEM image, (b) enlarged images of Figure a, (c) HRTEM image, and FFT pattern in the rectangle region I of (c) for 50%CeO₂-CuCoO₂.

Figure S8 (a) TEM image, and (b) HRTEM image of 90%CeO₂-CuCoO₂, FFT pattern in the rectangle region.

Figure S9 XPS survey scans of the samples: (a) 10%CeO₂-CuCoO₂;(b) 30%CeO₂-CuCoO₂; (c) 50%CeO₂-CuCoO₂; (d) 70%CeO₂-CuCoO₂; and (e) 90%CeO₂-CuCoO₂.

Figure S10 FT-IR spectra for all samples.

Figure S11 XPS spectra of the Cu 2*p* for samples.

Figure S12 Auger spectra (Cu LMM peak) of the samples: (a) $10\%CeO_2$ -CuCoO₂; (b) $30\%CeO_2$ -CuCoO₂; (c) $50\%CeO_2$ -CuCoO₂; (d) $70\%CeO_2$ -CuCoO₂; and (e) $90\%CeO_2$ -CuCoO₂.

Figure S13 XPS spectra of the Co 2*p* for samples.

Figure S14 CO_2 selectivity for the samples with varied CeO_2 content.

Figure S15 Reaction rates of the samples under CO-PROX conditions at 100 °C.

Sample	Amount of catalyst (mg)	Space Velocity (ml·g _{cat} -1.h-1)	Feed gas	operation temperature window (CO conversion >95.0%)	Ref
70%CeO ₂ -CuCoO ₂	50	60 000	1% CO, 1.25% O ₂ , 50% H ₂ , He balance	120-240 °C	This work
$\begin{array}{c} Co_{2.6}Zn_{0.4}O_4/Al_2O_3\\ \textbf{-gly} \end{array}$	150	40 000	2% CO, 2% O ₂ , 30% H ₂ , He balance	200-225	1
Co-CuCZ	300	24 000	1 % CO, 1 % O ₂ , 50 % H ₂ , He balance	100-160 °C	2
CuCe-Fe	300	16 000	1 % CO, 1 % O ₂ , 50 % H ₂ , He balance	100-180 °C	3
$\frac{40\% CeO_2}{CuMn_2O_4}$	Undefined	80 000	1% CO, 1.25% O ₂ , 50% H ₂ , 0.2% H ₂ O, He balance	175-200 °C	4
80%CeO ₂ / CuMn ₂ O ₄	Undefined	80 000	1% CO, 1.25% O ₂ , 50% H ₂ , 0.2% H ₂ O, He balance	175-200 °C	4
CuCoCe30	500	12 000	1 % CO, 1 % O ₂ , 50% H ₂ , balance N ₂	126-189 °C	5
CoCuCe	100	12 000	1% CO, 1% O ₂ , 60% H ₂ , balance He	140-200 °C	6
1/10Fe _(N) -CuCZ.	300	24 000	1% CO, 1% O ₂ , 50% H ₂ , balance He	100-160 °C	7
CoFe ₂ O ₄	150	40 000	1% CO, 1% O ₂ , 60% H ₂ , balance He		8
10COCE	150	22 000	1.25 % CO, 1.25 % O ₂ , 50 % H ₂ , He balance	140-190 °C	9
CuNiCeO	150	40 000	1 % CO, 1 % O ₂ , 60% H ₂ , balance He	125-150 °C	10
Се _{0.87} Си _{0.03} Со _{0.10} О 2-б	Undefined	48 000	1 % CO, 1 % O ₂ , 50% H ₂ , balance N ₂	180-250 °C	11
CeO ₂ -Co ₃ O ₄ /CuO (CAT-350)	Undefined	40 000	1 % CO, 1 % O ₂ , 50% H ₂ , balance N ₂	145-225 °C	12
FCZCu77	Undefined	22 000	1.25 % CO, 1.25 % O ₂ , 50 % H ₂ , He balance	115-165 °C	13
Co-Mn-O-np	100	15 000	1 % CO, 1 % O ₂ , 50% H ₂ , balance Ar	150-225 °C	14
30%Co/CeO ₂	200	15 000	1 % CO, 1 % O ₂ , 50% H ₂ , balance Ar	150-225 °C	15

Table S1 Comparison of catalytic performance in CO-PROX over 70%CeO₂-CuCoO₂ and those catalysts reported in literatures.

Figure S16 Selectivity to CO_2 as a function of CO conversion for given samples.

Figure S17 CO conversion (a) and CO_2 selectivity (b) of 70%CeO₂-CuCoO₂ sample in the presence of CO_2 and H_2O .

Figure S18 CO₂ selectivity for given samples.

Figure S19 CO₂ (CO) methanation over the given samples at 220 °C and 240 °C.

Figure S20 DRIFTS spectra obtained for sample 50%CeO₂-CuCoO₂ at given temperatures under CO-PROX conditions (1% CO, 1.25% O₂ and 50% H₂ in He).

References:

 G. Grzybek, K. Ciura, J. Gryboś, P. Indyka, A. Davó-Quiñonero, D. Lozano-Castelló, A. Bueno-Lopez, A. Kotarba, and Z. Sojka, *J Phys Chem C.*, 2019, 123, 20221-20232.

 J. Lu, J. Wang, Q. Zou, Y. Zhao, J. Fang, S. He, D. He and Y. Luo, *J. Alloys Comp.*, 2019, **784**, 1248-1260.

J. Lu, J. Wang, Q. Zou, D. He, L. Zhang, Z. Xu, S. He and Y. Luo, ACS Catal.,
2019, 9, 2177-2195.

 A. Elmhamdi, L. Pascual, K. Nahdi and A. Martínez-Arias, *Appl. Catal. B Environ.*, 2017, 217, 1-11.

5. Y. Chen, D. Liu, L. Yang, M. Meng, J. Zhang, L. Zheng, S. Chu and T. Hu, *Chem. Eng. J.*, 2013, **234**, 88-98.

J. Ayastuy, E. Fernández-Puertas, M. González-Marcos and M. Gutiérrez-Ortiz, *Int. J. Hydrogen Energy.*, 2012, **37**, 7385-7397.

J. Wang, C. Han, X. Gao, J. Lu, G. Wan, D. He, R. Chen, K. Chen, S. He and Y. Luo, *J. Power Sources.*, 2017, 343, 437-445.

8. C. Chagas, E. Souza, M. Carvalho, R. Martins and M. Schmal, Appl. Catal. A General., 2016, **519**, 139-145.

 A. Arango-Diaz, J. Cecilia, J. Marrero-Jerez, P. Nuñez, J. Jiménez-Jiménez and E. Rodríguez-Castellón, *Ceram. Int.*, 2016, 42, 7462-7474.

 C. Chagas, E. Souza, R. Manfro, S. Landi, M. Souza and M. Schmal, *Appl. Catal. B Environ.*, 2016, **182**, 257-265. T. Cwele, N. Mahadevaiah, S. Singh and H. Friedrich, *Appl. Catal. B Environ.*,
2016, 182, 1-14.

12. S. Zeng, Q. Wang, Y. Wang, Y. Fei, N. Liu, S. Ding and H. Su, J. Nanosci. Nanotech., 2016, 16, 962-966.

13. E. Moretti, L. Moretti, A. Talon, P. Riello, A. Molina and E. Rodríguez-Castellón, *Appl. Catal. B Environ.*, 2015, **168-169**, 385-395.

14. Z. Zhao, J. Lin and G. Wang, AIChE J., 2015, 61, 239-252.

15. C. Yan, H. Chen, R. Hu, S. Huang, W. Luo, C. Guo, M. Li and W. Li, *Int. J. Hydrogen Energy.*, 2014, **39**, 18695-18701.