Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry

Journal of Materials Chemistry A

RSCPublishing

Electronic Supplementary Information

High temperature-functioning ceramic-based ionic liquid electrolyte engraved planar HAp/PVP/MnO₂@MnCO₃ supercapacitors on carbon cloth

Samayanan Selvam, Jin-Heong Yim*

Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam 31080, South Korea

E-mail: jhyim@kongju.ac.kr;

sselvam222@gmail.com.

Planar Supercapacitor

In-plane charging/discharging

ESI Fig. 1. Schematic illustration of ion migration pathways in planar supercapacitor.

ESI Fig. 2. FTIR spectra of MnO₂@MnCO₃ (i) and HAp/PVP/ MnO₂@MnCO₃ (ii) composite.

The FTIR spectrum of $MnO_2@MnCO_3$ shows typical peaks around 790, 860 and 1550cm⁻¹, which are dominant for carbonate ions ($CO_3^{2^{-}}$). The peaks at 480 cm⁻¹ and 651cm⁻¹ attributed for Mn-O and this study evidenced for the formation of $MnO_2@MnCO_3$. The HAp/PVP/MnO_2@MnCO_3 composite spectrum presence of the characteristic peaks at 3560 cm⁻¹ for vibration modes of hydroxyl groups. The PO₄³⁻ peaks are clearly existing at 510 and 560 cm⁻¹. Also, the C-N peaks indicates the PVP incorporation in the composites. The remark of these peaks indicates that the $CO_3^{2^{-}}$, Mn-O, C-N and $PO_4^{3^{-}}$ groups in the HAp/PVP/ $MnO_2@MnCO_3$, thus confirming the survival MnO_2 and $MnCO^3$ in the prepared composites.¹⁻³

	Pore diameter				
Label	(nm)	Mean	Min	Max	Angle
1	29	17.831	3	90	-15.524
2	16	18.703	1.113	63.5	-93.945
3	25	31.624	6.917	76.75	-40.732
4	20	35.033	13.473	50.302	13.671
5	5	79.088	54.625	105.5	-69.444
6	6	97.8	87.4	112	-29.055
7	13	67.172	3.75	130	-25.463
8	9	9.215	1.438	30.5	-31.608
10	7	106.595	85.333	123.083	4.764
11	9	12.205	0	62.5	0
Mean					
Pore					
diameter	13.9	47.527	25.705	84.414	-28.734
SD	8.373	36.871	35.828	33.094	33.322
Min	5	9.215	0	30.5	-93.945
Max	29	106.595	87.4	130	13.671

ESI Tab. 1 Pore diameter calculations from SEM results

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Super Det

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Super Det

ESI Fig. 3. EDX analysis of MnO₂@MnCO₃ (a) and HAp/PVP/ MnO₂@MnCO₃ (b) composite.

ESI Fig. 4. Electrochemical setup of planar supercapacitors

5.00 x 5.00 um

ESI Fig.5 AFM images of a. Carbon fabric (18.7nm) and b. $HAp/PVP/MnO_2@MnCO_3$ (0.2%) composite coated fabric (161.05nm)

ESI Fig.6 AFM images of a. $HAp/PVP/MnO_2@MnCO_3$ (0.4%) (231.63nm) and b. $HAp/PVP/MnO_2@MnCO_3$ (0.6%) composite coated fabric (559.78nm)

ESI Fig. 7. High temperature functioning performance of planner supercapacitors with HAp and without HAp.

Calculations

The Gravimetric specific capacitance was calculated from the galvanostatic discharge curves, using the following equation 1.

$$C = \frac{I\Delta t}{m\Delta V}\dots 1$$

Also, the aerial capacitance was calculated from equation 2

$$CC = \frac{I\Delta t}{A\Delta V}$$
.....2

Where (I) is charge or discharge current, Δt (s) is the time for a full charge or discharge, *m* (g) designates the mass of the active material, A is the area of the active materials and ΔV signifies the voltage change after a full charge or discharge.

The energy density (E) considered by equation 3.

$$E = \frac{C(\Delta V)^2}{2} Whkg^{-1} \dots 3$$

Where C is the specific capacitance of the active materials, and ΔV is the potential window of discharge.⁴

Supercapacitor	Specific	Energy
samples	Capacitance	Density
	(Fg ⁻¹)	(Whkg⁻¹)
НАр	36.2	5.1
Without HAP(MnO ₂ @MnCO ₃)0.2%	120.4	16.7
Without HAP(MnO ₂ @MnCO ₃)0.4%	320.1	44.5
Without HAP(MnO ₂ @MnCO ₃)0.6%	243.3	33.8
HAP/PVP/ MnO ₂ @MnCO ₃ (0.2%)	144.5	20.1
HAP/PVP/ MnO ₂ @MnCO ₃ (0.4%)	409.5	56.9
HAP/PVP/ MnO ₂ @MnCO ₃ (0.6%)	325.1	45.2

ESI Tab.2 Specific capacitance and Energy density profile of planner supercapacitors with HAp and without HAp.

References

- N. F. MahamadYusof, N. H. Idris, M. F Din, S. R. Majid, N. Harun, M. M. Rahman, (2020) 10:9207 | https://doi.org/10.1038/s41598-020-66148-w
- 2. M. Manoj, D. Mangalaraj, N. Ponpandian and C. Viswanathan, RSC Adv., 2015, 5, 48705-48711
- 3. Z. Yang, Y. Jiang, L. X. Yu, B. Wen, F. Li, S. Sun and T. Hou, J. Mater. Chem., 2005, 15, 1807–1811
- 4. S. Selvam, B. Balamuralitharan, S.N. Karthick, K.V.Hemalatha, K. Prabakar and Hee-Je Kim, Anal. Methods, 2016, 8, 7937-7943.