Supporting Information

Oxygen-deficient TiO₂ and carbon coupling synergistically boost Ru nanoparticles for alkaline hydrogen evolution

reaction

Zhongzhe Wei^a, Zijiang Zhao^a, Jing Wang^{b,*}, Qiang Zhou^a, Chenxia Zhao^a, Zihao Yao^a, Jianguo Wang^{a,*}

E-Mail: jgw@zjut.edu.cn

^aInstitute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China.

^b Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P. R. China.

Table S1. The element analysis results for different catalyst
--

Sample	C (%)	H (%)	Ru (%)
Ru/TiO2@C-0	0.08	0.43	-
$Ru/TiO_2-V_0@C-5$	7.00	0	3.2
Ru/TiO ₂ -V ₀ @C-10	12.17	0.77	3.0
Ru/TiO ₂ -V ₀ @C-15	13.58	0.97	2.9
Ru/TiO ₂ -V ₀ @C-20	14.33	1.02	2.8

Table S2. Summary of the recently reported noble metal-based HER catalysts.

Catalyst	η-j ^a	Electrolyte solution	Reference
Ru/TiO ₂ -V ₀ @C-15	64-10	1.0 M KOH	This work
R-TiO ₂ :Ru (5%)	150-10	0.1 M KOH	J. Am. Chem. Soc., 140 (2018), 5719
Ru/C ₃ N ₄ /C	79-10	0.1 M KOH	J. Am. Chem. Soc., 138 (2016), 16174
Cu _{2-x} @Ru	82-10	1.0 M KOH	Small, 13 (2017), 1700052
Ru_{SA} -N-S-Ti ₃ C ₂ T _x	76-10	0.5 M H ₂ SO ₄	<i>Adv. Mater.</i> , 31 (2019), 1903841
ECM@Ru	63-10	0.5 M H ₂ SO ₄	Adv. Energy Mater., 10 (2020), 2000882
Sr ₂ RuO ₄	61-10	1.0 M KOH	Nat. Commun., 10 (2019), 149
Ni-doped RuO ₂ NWs	52-10	1.0 M KOH	J. Mater. Chem. A, 7 (2019), 6411
RuS _x /S–GO	58-10	1.0 M KOH	Small, 15 (2019), 1904043
Ru0.33Se@TNA	57-10	1.0 M KOH	Small, 14 (2018), 1802132
hydrous RuO ₂	60-10	1.0 M KOH	Chem. Phys. Lett., 673 (2017), 89-92
Pt-Ru-Mo	196-10	Seawater	J. Mater. Chem. A., 4 (2016), 6513
Pt@2D-Ni(OH)2	123-4.2	0.1 M KOH	Nano Energy, 31 (2017), 456

Ru/SiNWs	200-10	0.5 M H ₂ SO ₄	<i>Electrochem. Commun.</i> , 52 (2015), 29
Ru-CNT	63-4.874	0.5 M H ₂ SO ₄	<i>Int. J. Hydrogen Energy</i> , 41 (2016), 23007
RuP ₂ @NPC	52-10	1.0 M KOH	Angew. Chem., Int. Ed., 56 (2017), 11559
GCE-S-CNs-1000- CB-Ru	~80-10	0.5 M H ₂ SO ₄	Carbon 93 (2015), 762

[a] η represents the overpotential calculated at the current density of j (j/mA cm⁻²).

Table S3. H₂ chemisorption results for different Ru/TiO₂-Vo@C catalysts.

Sample	H2 uptake (mmol _{H2} g _{Ru} ⁻¹)
Ru/TiO ₂ -Vo@C-5	0.273
Ru/TiO ₂ -Vo@C-10	0.338
Ru/TiO ₂ -Vo@C-15	0.394
Ru/TiO ₂ -Vo@C-20	0.356

Table S4. The EPR semi-quantitative analysis results for different catalysts.

Sample	Amount of oxygen vacancies (spins/g)
Ru/TiO ₂ -V ₀ @C-5	$1.436^{*}10^{18}$
Ru/TiO ₂ -V ₀ @C-10	$6.928*10^{18}$
$Ru/TiO_2-V_0@C-15$	$8.462^{*}10^{18}$
$Ru/TiO_2-V_0@C-20$	$7.665 \ ^{*10^{18}}$
$Ru/TiO_2-V_0@C-25$	$1.561^{*}10^{15}$
Ru/TiO2-Vo@C-15-800 °C	$8.355*10^{16}$

Figure S1. HRTEM images of Ru/TiO₂-Vo@C-15 to show the oxygen vacancies on TiO_2 .

Figure S2. The energy dispersive X-ray (EDX) spectrum of Ru/TiO₂-V₀@C-15.

Figure S3. O 1s XPS spectrum for Ru/TiO₂-V₀@C-15.

Figure S4. (a) Polarization curves of Ru/TiO₂-V₀@C-15 and Pt/C in 1 M KOH. The inset shows the mass activity of Ru/TiO₂-V₀@C-15 and Pt/C at an overpotential of - 300 mV (vs reversible hydrogen electrode, RHE). (b)The mass activities of the catalysts (normalized the currents by Ru contents).

Figure S5. Cyclic voltammetry curves of (a) $Ru/TiO_2-V_0@C-5$, (b) $Ru/TiO_2-V_0@C-10$, (c) $Ru/TiO_2-V_0@C-15$ and (d) $Ru/TiO_2-V_0@C-20$, respectively. The arrow indicates the scan rate from 10 mV to 50 mV.

Figure S6. XRD and Raman patterns of Ru/TiO_2 -Vo@C-X (X = 5, 10, 15 and 20).

Figure S7. Represented TEM and HRTEM images of Ru/TiO₂@C-0.

Figure S8. TEM image and corresponding Ru particle size distribution histogram of Ru/TiO_2 -Vo@C-5.

Figure S9. TEM image and corresponding Ru particle size distribution histogram of Ru/TiO₂-Vo@C-10.

Figure S10. TEM image and corresponding Ru particle size distribution histogram of Ru/TiO₂-Vo@C-20.

Figure S11. EPR signal of Ru/TiO₂-V₀@C-25.

Figure S12. (a) XRD pattern, (b) Raman spectrum, (c) EPR spectra, and (d) Ru 3d XPS spectrum of Ru/TiO₂-V₀@C-15-800 °C.

Figure S13. LSV curves of Ru/TiO₂-V₀@C-15 under different initial voltages.

Figure S14. Diffuse reflectance UV-vis spectrum of Ru/TiO_2 -V₀@C-15 and Ru/TiO_2 @C-0.

Figure S15. Optical image for Ru/TiO₂-V₀@C-15.

Figure S16. The H* adsorption energies of Ru/TiO₂, Ru/TiO₂-Vo and Ru/TiO₂-Vo@C and corresponding structures.