Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Ni, Beyond Thermodynamic Tuning, Maintains the Catalytic Activity of V Species in Ni₃(VO₄)₂ Doped MgH₂

Jiahe Zang,^a Shaofei Wang,^{bcd} Rongrun Hu,^a Han Man,^a Jichao Zhang,^e Fei Wang,^a Dalin Sun,^a Yun Song,^{a, *} Fang Fang^{a, *}

^a Department of Materials Science, Fudan University, Shanghai, 200433, PR China

^b Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China

^c Spallation Neutron Source Science Center, Dongguan, 523808, China

^d School of Nuclear Sciences and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China

^e Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, PR China

*Corresponding author at: Department of Materials Science, Fudan University, Shanghai 200433 (P. R. China)

E-mail addresses: songyun@fudan.edu.cn; f_fang@fudan.edu.cn.

Content:

Table S1. Structural parameters and phase abundance for as-prepared $Ni_3(VO_4)_2$.

Table S2. Atomic coordinates, occupation factors and isotropic thermal parameters of $Ni_3(VO_4)_2$.

Fig. S1. Electron diffraction patterns of $Ni_3(VO_4)_2$.

Fig. S2. XRD patterns of MgH_2 -Ni₃(VO₄)₂ and pure MgH_2 after ball-milling.

Equation S1. and Equation S2. Van't Hoff equation and Kissinger's equation.

Fig. S3. TG curves of MgH_2 -Ni₃(VO₄)₂ sample at different heating rates.

Fig. S4. DSC curves of ball-milled MgH₂ at different heating rates.

Fig. S5. (a-b) SEM, EDS mapping of (c) Mg, (d) Ni, (e) V and (f) O for dehydrogenated $MgH_2-Ni_3(VO_4)_2$ sample.

Fig. S6. Schematic diagram of the crystal structure of MgH₂.

Fig. S7. DOS of V_2O_3 (001) crystal plane and Mg₂Ni doped V_2O_3 .

Sample	Space Group	Latt			
		а	b	С	Abundance
as-prepared Ni ₃ (VO ₄) ₂	Стса	6.0157(2)	11.4295(1)	8.4315(5)	100 wt%

Table S1 Structural parameters and phase abundance for as-prepared $Ni_3(VO_4)_2$.

Table S2 Atomic coordinates, occupation factors and isotropic thermal parameters of $Ni_3(VO_4)_2$.

Atom	Site	g	x	У	Z	В (Ų)
Ni(1)	4 <i>a</i>	1	0	0	0	0.42(3)
Ni(2)	8 <i>e</i>	1	0.25	0.125	0.25	0.58(1)
V(1)	8f	1	0	0.4106	0.1213	0.67(3)
O(1)	8f	1	0	0.2292	0.2805	0.45(2)
O(2)	8f	1	0	0	0.2742	0.85(1)
O(3)	16 <i>g</i>	1	0.2221	0.1091	0.8478	0.66(3)

Figure S1

Fig.S1 Selected area electron diffraction patterns of $Ni_3(VO_4)_2$.

Figure S2

Fig.S2 XRD patterns of MgH_2 -Ni₃(VO₄)₂ and pure MgH_2 after ball-milling.

Van't Hoff equation

The relationship between equilibrium pressures and reaction temperatures can be described by the Van't Hoff equation:

$$\ln P_{\rm H_2} = \frac{\Delta \rm H}{\rm RT} - \frac{\Delta \rm S}{\rm R}$$
 Equation S1

where T is the experimental temperature, P is the equilibrium pressure, and R is the gas constant.

Kissinger's equation

The relationship between the peak temperatures (T_P) and the different heating rates (β) is as follows:

$$\frac{d[\ln(\beta/T_p^2)]}{d(1/T_p)} = -\frac{-Ea}{R}$$
 Equation S2

where R is the gas constant. $\ln(\beta/T_p^2)$ vs.1/ T_p satisfies a linear relationship and the slope is -Ea/R.

Figure S3

Fig.S3 TG curves of MgH_2 -Ni₃(VO₄)₂ sample at different heating rates.

Fig.S4 DSC curves of ball-milled MgH₂ at different heating rates.

Figure S5

Fig.S5 (a-b) SEM, EDS mapping of (c) Mg, (d) Ni, (e) V and (f) O for dehydrogenated

MgH₂-Ni₃(VO₄)₂ sample.

Fig.S6 Schematic diagram of the crystal structure of MgH₂.

Figure S7

Fig.S7 DOS of V_2O_3 (001) crystal plane and Mg_2Ni doped V_2O_3 .