Electronic supplementary information

Ligand-free direct heteroarylation approach for benzobithiophenedione-based simple small molecular acceptor toward high efficiency polymer solar cells

Zhuhao Wu^{\dagger}, Yinchu Chen ${ }^{\dagger}$, Lianjie Zhang*, Dong Yuan, Rihang Qiu, Suinan Deng, Haizhen Liu, Zesheng Zhang and Junwu Chen*

Institute of Polymer Optoelectronic Materials \& Devices
State Key Laboratory of Luminescent Materials \& Devices
South China University of Technology
Guangzhou 510640, P. R. China
E-mails: lianjiezhang@scut.edu.cn; psjwchen@scut.edu.cn
${ }^{\dagger}$ These authors contributed equally to this article.
(a)

(b)

Fig. S1 Synthesis routes of a few representative fused-ring electron acceptors: (a) IEICO-4F ${ }^{1-3}$, (b) IT-4F ${ }^{4,5}$, and (c) Y^{6}.
(a)

(b)

(c)

Fig. S2 Synthesis routes of some simple fused-ring acceptors PTIC (a), X-PCIC and X1-PCIC (b), and BTCIC-4Cl (c) with PCE over 10%, where ligands are employed in the direct $\mathrm{C}-\mathrm{H}$ arylations.

Table S1. Summary for Reaction condition and PCE of the PSCs based on SFAs

Acceptor	Organotin free	Ligand free	Donor	PCE $\mathrm{E}_{\text {best }}$	Reference
BDDEH-4F	\checkmark	\checkmark	PM6	12.59\%	This work
BDDBO-4F	$\sqrt{ }$	\checkmark	PM6	9.80\%	This work
PTIC	$\sqrt{ }$	\times	PBDB-TF	10.27\%	7
X-PCIC	$\sqrt{ }$	\times	PBDB-T	11.33\%	8
X1-PCIC	\checkmark	\times	PBDB-T	10.05\%	8
BTCIC-4Cl	\checkmark	\times	PBDB-T-2Cl	10.50\%	9
TPDCIC	\times	\checkmark	PBDB-T	10.12\%	10
DOC2C6-2F	\times	\checkmark	PBDB-T	13.24\%	11
BCDT-4Cl	\times	\checkmark	PBDB-T	12.10\%	12
SiOC2C6-4Cl	\times	\checkmark	PBDB-T	11.29\%	13
o-DOC6-2F	\times	\checkmark	PBDB-T	11.87\%	14
o-DOC8-2F	\times	\checkmark	PBDB-T	11.23\%	14
o-DOC2C6-2F	\times	\checkmark	PBDB-T	10.80\%	14
FOC6-IC	\times	\checkmark	PBDB-T	10.80\%	15
FOC6-FIC	\times	\checkmark	PBDB-T	12.08\%	15
FOC2C6-2FIC	\times	\checkmark	PBDB-T	12.36\%	15
DF-PCIC	\times	\checkmark	PBDB-T	10.12\%	16
HF-PCIC	\times	\checkmark	PM6	12.59\%	17
BTOR-IC4F	\times	\checkmark	PM6	9.80\%	18
o-4TBC-2F	\times	\checkmark	PBDB-TF	10.27\%	19
BTzO-4F	\times	\checkmark	PBDB-T	13.80\%	20

Experimental Section

Synthesis Procedures

All reagents and solvents were purchased from commercial sources (like J\&K, Energy Chemical, Derthon and Acros) used without further purification unless otherwise specified. The monomers $\mathrm{BDDEH}-\mathrm{Br}$ and $\mathrm{BDDBO}-4 \mathrm{Br}$ are commercial, which can purchase from Derthon. All manipulations involving air-sensitive reagents were performed under an atmosphere of dry argon.

Synthesis of compound 1a

In a 50 mL two-necked flask, 1,3-Dibromo-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']-dithiophene-4,8-dione (BDDEH-Br) (487.99 mg, 0.8 mmol), 4,4-di(2-ethylhexyl)cyclopenta [2,1-b:3,4-b']dithiophene (CPDT) ($966.48 \mathrm{mg}, 2.40 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(276.41$ $\mathrm{mg}, 2.00 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(17.96 \mathrm{mg}, 0.08 \mathrm{mmol})$ were dissolved in $\mathrm{N}, \mathrm{N}-$ Dimethylacetamide (DMAc) (25 mL) under N_{2}. Then the mixture was heated up to 80 ${ }^{\circ} \mathrm{C}$ for 4 h , After cooled down to room temperature, water were added, the mixture was
extracted by ethyl acetate three times and washed with water. After the combined organic phase was concentrated, the residue was purified by silica gel column chromatography using petroleum as eluent. The pure compound 1 a was obtained as a red brown oil ($648 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.24$ $(\mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.23(\mathrm{~m}, 4 \mathrm{H}), 2.04-1.84(\mathrm{~m}, 10 \mathrm{H})$, $1.43-1.20(\mathrm{~m}, 18 \mathrm{H}), 1.18-0.77(\mathrm{~m}, 40 \mathrm{H}), 0.82-0.50(\mathrm{~m}, 30 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}^{3}\right) \delta(\mathrm{ppm}): 177.85,159.12,157.37,152.83,142.98,136.89,133.22,132.90$, $132.86,131.03,126.38,125.51,122.40,53.66,43.24,41.42,35.15,35.09,34.28,34.22$, $33.64,32.86,28.95,28.61,27.38,26.93,26.05,23.08,22.89,22.87,22.79,14.26$, 14.19, 14.10, 10.94, 10.75, 10.63, 10.61. MS (MALDI-TOF): $m / z 1245.62\left(\mathrm{M}^{+}\right)$.

Synthesis of compound 1b

The synthesis steps of compound 1 b are similar to that of compound 1 a . Compound lb was obtained as a red brown oil (717.17 mg, 66%). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $7.71-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{dt}, \mathrm{J}=5.0,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.45$ $-3.30(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.82(\mathrm{~m}, 10 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 30 \mathrm{H}), 1.06-0.84(\mathrm{~m}, 44 \mathrm{H}), 0.79$ $-0.71(\mathrm{~m}, 12 \mathrm{H}), 0.71-0.57(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}^{3}\right) \delta(\mathrm{ppm}): 177.84$, 159.26, 157.19, 152.81, 143.00, 136.91, 133.17, 132.89, 130.96, 130.85, 126.37, 125.46, 122.39, 53.65, 43.22, 39.94, 35.13, 35.07, 34.26, 34.21, 34.04, 33.73, 33.44, 31.87, 29.70, 28.92, 28.59, 27.48, 27.36, 26.63, 23.08, 22.88, 22.85, 22.78, 22.70, 14.26, 14.18, 14.12, 14.09, 10.72, 10.61, 10.59. MS (MALDI-TOF): $m / z 1359.74\left(\mathrm{M}^{+}\right)$.

Synthesis of compound 2a

In a 50 mL two-necked flask, the compound $1 \mathrm{a}(361.36 \mathrm{mg}, 0.29 \mathrm{mmol})$ was dissolved in DMF (25 mL) under an argon atmosphere, $\mathrm{POCl}_{3}(1.33 \mathrm{~g}, 8.70 \mathrm{mmol})$ was added dropwise into the mixture solution at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 2 h , then the mixture was heated up to $80^{\circ} \mathrm{C}$ overnight. After reaction finished, the mixture was pour into cold NaOH aqueous solution. The crude product was extracted with ethyl acetate and washed with NaCl aqueous solution. After removing the solvent, silica gel column chromatography was used to purify the product with the mixture of petroleum ether and dichloromethane $(1: 1, \mathrm{v} / \mathrm{v})$ as the eluent.The pure compound 3 was obtained as red oil ($360 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.87(\mathrm{~s}, 2 \mathrm{H}), 7.73-$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.31(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 8 \mathrm{H}), 1.79$ $(\mathrm{s}, 2 \mathrm{H}), 1.45-1.25(\mathrm{~m}, 18 \mathrm{H}), 1.04-0.89(\mathrm{~m}, 40 \mathrm{H}), 0.81-0.71(\mathrm{~m}, 12 \mathrm{H}), 0.72-0.59$ (m, 18H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 182.63,177.68,161.09,158.68$, 153.92, 147.31, 144.36, 142.46, 140.94, 137.21, 132.81, 132.50, 130.49, 125.35, 54.17, 43.14, 41.39, 35.31, 35.25, 34.39, 34.19, 33.68, 32.81, 31.51, 29.70, 28.90, 28.56, $27.59,27.35,26.92,26.02,23.04,22.76,14.26,14.14,14.07,10.89,10.68,10.60$.

Synthesis of compound 2b

The synthesis steps of compound 2 b are similar to that of compound 2 a . Compound 2 b was obtained as a red oil $(540 \mathrm{mg}, 96 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.87(\mathrm{~s}$, 2H), 7.71 (dt, $J=5.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.24(\mathrm{~m}, 4 \mathrm{H}), 2.07$ $-1.91(\mathrm{~m}, 8 \mathrm{H}), 1.84(\mathrm{~s}, 2 \mathrm{H}), 1.45-1.21(\mathrm{~m}, 30 \mathrm{H}), 1.09-0.83(\mathrm{~m}, 44 \mathrm{H}), 0.80-0.71$
$(\mathrm{m}, 12 \mathrm{H}), 0.69-0.6(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 182.63,177.63$, $161.03,160.96,158.68,153.93,147.32,144.38,142.47,140.98,137.22,132.80$, $130.50,125.32,54.17,43.15,39.95,35.32,35.26,34.44,34.38,34.20,34.12,33.70$, 33.42, 31.92, 29.68, 28.89, 28.56, 27.61, 27.54, 27.35, 26.59, 23.07, 22.85, 22.77, $22.70,14.28,14.13,14.08,10.71,10.62,10.61$.

Synthesis of BDDEH-4F

In 50 mL two-necked flask, the compound 2 a ($260.42 \mathrm{mg}, 0.20 \mathrm{mmol}$), (2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile $\quad(138.10 \mathrm{mg}, \quad 0.60$ $\mathrm{mmol})$ and pyridine $(0.1 \mathrm{~mL})$ were dissolved in chloroform $(25 \mathrm{~mL})$. Then the mixture was heated at $60^{\circ} \mathrm{C}$ and stirred for 4 h . After cooling to room temperature, the mixture was poured into methanol (150 mL) and filtered. The residue was purified by silica gel column chromatography using dichloromethane/petroleum ether ($1 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to give a dark blue solid ($283.84 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.92$ (s, 2H), $8.54(\mathrm{dd}, J=9.8,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H})$, $3.45-3.33(\mathrm{~m}, 4 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 8 \mathrm{H}), 1.82(\mathrm{~s}, 2 \mathrm{H}), 1.49-1.32(\mathrm{~m}, 16 \mathrm{H}), 1.07-$ $0.92(\mathrm{~m}, 44 \mathrm{H}), 0.78-0.71(\mathrm{~m}, 16 \mathrm{H}), 0.69-0.64(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 186.06,177.48,164.18,160.19,158.47,157.78,155.32,154.53$, $153.33,142.31,141.46,140.74,139.82,138.17,136.54,134.49,133.46,132.59$, $125.55,120.13,115.00,114.82,114.59,112.60,112.45,68.54,54.13,43.17,41.36$, $35.47,34.35,34.30,34.10,33.76,32.70,28.83,28.54,28.47,27.57,27.51,27.34$, 25.96, 23.06, 22.87, 22.84, 22.81, 14.26, 14.16, 14.10, 10.87, 10.63. MS (MALDITOF): $m / z 1725.67\left(\mathrm{M}^{+}\right)$.

Synthesis of BDDBO-4F

The synthesis steps of BDDBO-4F are similar to that of BDDEH-4F. BDDBO-4F was obtained as a red oil (157.59 mg, 83\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.92(\mathrm{~s}$, $2 \mathrm{H}), 8.54(\mathrm{dd}, J=9.8,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=7.9,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.64(\mathrm{~m}, 4 \mathrm{H})$, $3.47-3.31(\mathrm{~m}, 4 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 8 \mathrm{H}), 1.87(\mathrm{~s}, 2 \mathrm{H}), 1.44-1.27(\mathrm{~m}, 32 \mathrm{H}), 1.06-$ $0.86(\mathrm{~m}, 44 \mathrm{H}), 0.79-0.71(\mathrm{~m}, 16 \mathrm{H}), 0.69-0.64(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 186.02,177.47,164.14,160.19,158.47,157.78,155.32,154.58,153.33$, $153.22,153.22,142.31,141.50,140.72,139.84,138.15,136.54,134.50,133.44$, $132.59,125.49,120.14,114.99,114.59,112.60,68.52,54.14,43.28,43.17,39.98$, $35.47,34.36,34.31,34.19,34.11,33.62,33.32,31.93,29.70,28.82,28.54,28.48$, $27.58,27.51,27.34,26.56,23.08,22.87,22.85,22.81,22.71,14.28,14.14,14.10$, 10.63. MS (MALDI-TOF): $m / z 1837.80\left(\mathrm{M}^{+}\right)$.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of BDDEH-4F

Fig. S4 ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of BDDBO-4F

Fig. S5 The MALDI-TOF MS plot of compound 1a

Fig. S6 The MALDI-TOF MS plot of compound 1b

Fig. S7 The MALDI-TOF MS plot of BDDEH-4F

Fig. S8 The MALDI-TOF MS plot of BDDBO-4F

Fig. S9 TGA image of BDDEH-4F and BDDBO-4F under N_{2} atmosphere.

(c) Top view

(d) Side view

Fig. S10 The optimized frontier molecular orbitals and conformations obtained by DFT calculations for BDD core based acceptors.

Fig. S11 Absorption coefficients of BDDEH-4F and BDDBO-4F in chloroform solutions.

Fig. S12 Cyclic voltammetry measurements of BDDEH-4F and BDDBO-4F.

Table S2. Optical and electrochemical properties of BDDEH-4F and BDDBO-4F

Acceptor	$\lambda_{\text {max }}(\mathrm{nm})$		$\begin{aligned} & \lambda_{\text {onset }} \\ & (\mathrm{nm}) \end{aligned}$	$\begin{gathered} \varepsilon_{\max } \\ \left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \end{gathered}$	$E g^{\text {opt }}$ (eV)	HOMO (eV)	LUMO (eV)	$\begin{aligned} & E_{\mathrm{g}}{ }^{\mathrm{cv}} \\ & (\mathrm{eV}) \end{aligned}$
	Solution	Film						
BDDEH-4F	715	776	877	1.90×10^{5}	1.41	-5.57	-3.94	1.63
BDDBO-4F	714	773	873	1.67×10^{5}	1.42	-5.56	-3.93	1.63

Device Fabrication and Characterization

The device structure was $\mathrm{ITO} / \mathrm{ZnO} /$ Donor:Acceptor $/ \mathrm{MoO}_{3} / \mathrm{Al}$. Patterned indium tin oxide (ITO)-coated glass with a sheet resistance of 15-20 ohm/square was cleaned by a surfactant scrub and then underwent a wet-cleaning process inside an ultrasonic bath that began with deionized water, followed by acetone and 2-propanol. A solutionprocessed zinc oxide (ZnO) interlayer of 30 nm was prepared according to a recent report. ${ }^{21}$ The substrates were then transferred into a nitrogen-filled glove box.Active layer solutions with PM6 and acceptor (BDDEH-4F or BDDBO-4F) were prepared in CB solvent. The solutions were then spin-coated onto the substrates and dried under vacuum. A 10 nm MoO 3 layer and a 100 nm Al layer were subsequently evaporated through a shadow mask to define the active area of the devices $\left(5.8 \mathrm{~mm}^{2}\right)$ and form the top anode.

The PCE was determined from $J-V$ curve measurements (using a Keithley 2400 sourcemeter) under a 1 sun, AM 1.5G spectrum from a solar simulator (Oriel model 91192; $1000 \mathrm{~W} \mathrm{~m}^{-2}$). All the masked and unmasked tests gave consistent results with relative errors within 5%. The solar simulator illumination intensity was determined using a monocrystal silicon reference cell (Enli/SRC2020, with KG-5 visible color filter) calibrated by the National Renewable Energy Laboratory (NREL). Theoretical
$J_{\text {sc }}$ values obtained by integrating the product of the EQE with the AM 1.5 G solar spectrum agreed with the measured value to within 5%.

Table S3. Photovoltaic performance of PSCs based on PM6:BDDEH-4F with different
D:A ratio

Donor:Acceptor	D:A	$V_{\text {oc }}$ (V)	J_{sc} $\left(\mathrm{mA} \cdot \mathrm{cm}^{-2}\right)$	FF $(\%)$	PCE $(\%)$
	$1: 1$	0.89	18.58	50.67	8.39
PM6:BDDEH-4F	$1: 1.2$	0.89	18.96	49.12	8.30
	$1: 1.5$	0.88	17.59	47.51	7.36

Table S4. Photovoltaic performance of PSCs based on PM6:BDDEH-4F, with different annealing temperature and annealing time.

Donor:Acceptor	Annealing Temperature	$V_{\text {oc }}$ (V)	$\begin{gathered} J_{\mathrm{sc}} \\ \left(\mathrm{~mA} \cdot \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{aligned} & \text { FF } \\ & (\%) \end{aligned}$	$\begin{gathered} \text { PCE } \\ (\%) \end{gathered}$
PM6:BDDEH-4F (1:1)	as cast	0.89	18.58	50.67	8.39
	$90^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.89	20.43	51.18	8.67
	$120{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.87	20.49	55.36	9.88
	$160{ }^{\circ} \mathrm{C}+5 \mathrm{~min}$	0.86	21.78	60.9	11.42
	$160{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.88	21.63	62.60	11.93
	$160{ }^{\circ} \mathrm{C}+15 \mathrm{~min}$	0.86	22.76	58.07	11.38
	$180{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.85	21.26	57.98	11.16
PM6:BDDEH-4F (1:1.2)	as cast	0.89	18.96	49.12	8.30
	$120{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.88	20.44	52.43	9.44
	$140{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.87	21.48	56.94	10.65
	$160{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.87	22.36	58.43	11.38
PM6:BDDEH-4F (1:1.5)	as cast	0.88	17.59	47.51	7.36
	$120{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.88	21.29	52.03	9.09
	$140{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.88	21.42	55.79	10.53
	$160{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.87	22.46	56.82	11.11

Table S5. Varied amount of 1-chloronaphthalene (CN) of PSCs devices based BDDEH-4F with different D:A ratio and annealing temperature of $160{ }^{\circ} \mathrm{C}$ and annealing time of 10 min .

Donor:Acceptor	$\mathrm{CN}(\mathrm{vol} \%)$	$V_{\text {oc }}$ (V)	J_{sc} $\left(\mathrm{mA}^{\prime} \cdot \mathrm{cm}^{-2}\right)$	FF $(\%)$	PCE $(\%)$
PM6:BDDEH-4F	0	0.88	21.63	62.60	11.93
$(1: 1)$	0.5%	0.88	22.57	63.38	12.59
	1.0%	0.87	20.03	64.35	11.23
PM6:BDDEH-4F	1.5%	0.86	19.79	64.95	11.07
$(1: 1.2)$	0	0.87	22.36	58.43	11.38
	0.5%	0.85	21.97	58.43	10.93
	1.0%	0.86	20.75	63.25	11.30
	1.5%	0.86	20.16	63.10	10.83

Fig. S13 Normalized thin film UV-vis absorption spectra of PM6:BDDEH-4F and PM6:BDDBO-4F under optimized condition.

Fig. S14 PL spectra of the neat films and optimized PM6:BDDEH-4F (a) and PM6:BDDBO-4F (b) blend films. Polymer PM6 and acceptors are excited at 550 and 750 nm , respectively.

Fig. S15 Photocurrent density versus effective voltage (a) and dependence of J_{sc} on light intensity (b) for the optimized PM6:BDDEH-4F and PM6:BDDBO-4F based devices.

Space-Charge Limited Current (SCLC) Measurement.

Hole-only and electron-only devices were fabricated to measure the hole and electron mobilities of active layers using the space charge limited current (SCLC) method with hole-only device of ITO/PEDOT:PSS/Active layer $/ \mathrm{MoO}_{3} / \mathrm{Al}$ and electron-only device
of ITO/ZnO/Active layer/PFN-Br/Al. The mobilities (μ) were determined by fitting the dark current to the model of a single carrier SCLC, described by the equation:

$$
J=\overline{8}_{\varepsilon_{0} \varepsilon_{i} \mu} \frac{\mathrm{~V}^{2}}{\mathrm{~d}^{3}}
$$

where J is the current, ε_{0} is the permittivity of free space, ε_{r} is the material relative permittivity, d is the thickness of the active layer, and V is the effective voltage. The effective voltage can be obtained by subtracting the built-in voltage (V_{bi}) and the voltage drop $\left(V_{\mathrm{s}}\right)$ from the substrate's series resistance from the applied voltage ($V_{\text {appl }}$), $V=V_{\text {appl }}-V_{\mathrm{bi}}-V_{\mathrm{s}}$. The mobility can be calculated from the slope of the $J^{1 / 2} \sim V$ curves.

Fig. S16 SCLC $J^{1 / 2}-V$ characteristics of the PM6:acceptors blend films in (a) hole-only and (b) electron-only devices, with device configurations of ITO/ PEDOT:PSS/ blend film $/ \mathrm{MoO}_{3} / \mathrm{Al}$ and $\mathrm{ITO} / \mathrm{ZnO} /$ blend film/PFN-Br/Al, respectively.

Contact angle measurements.

The contact angle tests were performed on a Dataphysics OCA40 Micro surface contact angle analyzer. The surface energy of the polymers and acceptors were characterized and calculated by the contact angles of the two probe liquids (water and diiodomethane) using the Wu model. ${ }^{22}$

$$
\begin{gathered}
\frac{4 \gamma_{\text {water }}^{\mathrm{d}} \gamma_{\mathrm{s}}^{\mathrm{d}}}{\gamma_{\text {water }}^{\mathrm{d}}+\gamma_{\mathrm{s}+}^{\mathrm{d}}} \frac{4 \gamma_{\text {water }}^{\mathrm{p}} \gamma_{\mathrm{s}}^{\mathrm{p}}}{\gamma_{\text {water }}^{\mathrm{p}}+\gamma_{\mathrm{s}=\gamma_{\text {water }}^{\mathrm{p}}}^{\mathrm{p}}\left(1+\cos \theta_{\text {water }}\right)} \\
\frac{4 \gamma_{\text {oil }}^{\mathrm{d}} \gamma_{\mathrm{s}}^{\mathrm{d}}}{\gamma_{\text {oil }}^{\mathrm{d}}+\gamma_{\mathrm{s}}^{\mathrm{d}}} \frac{4 \gamma_{\text {oil }}^{\mathrm{d}} \gamma_{\mathrm{s}}^{\mathrm{p}}}{\gamma_{\text {oil }}^{\mathrm{p}}+\gamma_{\mathrm{s}=\gamma_{\text {oil }}^{\mathrm{p}}}^{\mathrm{p}}} \\
\gamma_{\mathrm{s}=}=\gamma_{\mathrm{s}+\gamma_{\mathrm{s}}^{\mathrm{d}}}^{\mathrm{p}}
\end{gathered}
$$

where $\gamma_{\text {sis }}$ the total surface tension of acceptors and polymers, $\gamma_{\mathrm{s}}^{\mathrm{d}}$ and $\gamma_{\mathrm{s}}^{\mathrm{p}}$ are the dispersion and polar components of γ_{s}, the values of $\gamma_{\text {water, }}^{\mathrm{d}} \gamma_{\text {water }}^{\mathrm{p}} \gamma_{\text {oil }}^{\mathrm{d}}, \gamma_{\text {oil }}^{\mathrm{p}}$ could be found from the literature and θ is the droplet contact angle between sample and probe liquid. ${ }^{23}$

Fig. S17 Views of surface contact measurements for the films of PM6 and acceptors.

Table S6. The contact angles and surface energy parameters of the films.

Film	Contact angle		$\gamma^{\mathrm{d}}[\mathrm{mN} / \mathrm{m}]$	$\gamma^{\mathrm{p}}[\mathrm{mN} / \mathrm{m}]$	$\begin{gathered} \gamma \\ {[\mathrm{mN} / \mathrm{m}]} \end{gathered}$	χ
	$\theta_{\text {water }}\left({ }^{\circ}{ }^{\text {a }}\right.$	$\theta_{\text {oil }}\left({ }^{\circ}\right)^{\text {a }}$				
PM6	100.2	60.2	27.95	2.88	30.83	
BDDEH-4F	96.4	50.7	32.29	3.35	35.64	0.174K
BDDBO-4F	99.8	53.7	31.40	2.33	33.73	0.065K

${ }^{\mathrm{a}} \theta_{\text {oil }}$ represents the contact angle of diiodomethane. γ^{d} and γ^{p} represent the surface free energy (γ) generated from the dispersion forces and the polar forces, respectively.

Table S7. Structural parameters of PM6, BDDEH-4F and BDDBO-4F films obtained from the GIWAXS.

Film	In plane direction (100) peak		Out of plane direction (010) peak	
	Scattering vector (q)	d-spacing	Scattering vector (q)	$\pi-\pi$ distance
	$\left[\AA^{-1}\right]$	$[\AA]$	$\left[\AA^{-1}\right]$	$[\AA]$
S 22				

PM6	0.287	21.85	1.763	3.56
BDDEH-4F	0.364	17.23	1.819	3.45
BDDBO-4F	0.372	16.89	1.760	3.57
PM6:BDDEH-4F	0.309	20.29	1.831	3.43
PM6:BDDBO-4F	0.324	19.37	1.796	3.50

(a)

Fig. S18 2D GIWAXS images of films of PM6, BDDEH-4F, BDDBO-4F, PM:BDDEH-4F, and PM6:BDDBO-4F

References

1. H. Yao, Y. Chen, Y. Qin, R. Yu, Y. Cui, B. Yang, S. Li, K. Zhang and J. Hou, Adv. Mater., 2016, 28, 8283-8287.
2. H. Yao, Y. Cui, R. Yu, B. Gao, H. Zhang and J. Hou, Angew.Chem. Int. Ed., 2017, 56, 3045-3049.
3. Y. C. Chen, C. Y. Yu, Y. L. Fan, L. I. Hung, C. P. Chen and C. Ting, Chem. Coттип., 2010, 46, 6503-6505.
4. Y. X. Xu, C. C. Chueh, H. L. Yip, F. Z. Ding, Y. X. Li, C. Z. Li, X. Li, W. C. Chen and A. K. Jen, Adv. Mater., 2012, 24, 6356-6361.
5. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang and J. Hou, J. Am. Chem. Soc., 2017, 139, 7148-7151.
6. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li and Y. Zou, Joule., 2019, 3, 1140-1151.
7. Z. P. Yu, Z. X. Liu, F. X. Chen, R. Qin, T. K. Lau, J. L. Yin, X. Kong, X. Lu, M. Shi, C. Z. Li and H. Chen, Nat. Commun., 2019, 10, 2152.
8. S. Li, L. Zhan, T. K. Lau, Z. P. Yu, W. Yang, T. R. Andersen, Z. Fu, C. Z. Li, X. Lu, M. Shi and H. Chen, Small Methods., 2019, 3, 1900531.
9. S. Pang, X. Zhou, S. Zhang, H. Tang, S. Dhakal, X. Gu, C. Duan, F. Huang and Y. Cao, ACS Appl. Mater. Interfaces., 2020, 12, 16531-16540.
10. S. Geng, W. Yang, J. Gao, S. Li, M. Shi, T. Lau, X. Lu, C. Li and H. Chen, Chin. J. Polym Sci., 2019, 37, 1005-1014.
11. H. Huang, Q. Guo, S. Feng, C. Zhang, Z. Bi, W. Xue, J. Yang, J. Song, C. Li, X. Xu, Z. Tang, W. Ma and Z. Bo, Nat. Commun., 2019, 10, 3038.
12. C. He, Y. Li, S. Li, Z. P. Yu, Y. Li, X. Lu, M. Shi, C. Z. Li and H. Chen, ACS Appl. Mater. Interfaces., 2020, 12, 16700-16706.
13. Y. Zhang, C. e. Zhang, H. Huang, H. Jin, Y. Gao, R. Zheng, J. Song, C. Li, Z. Ma and Z. Bo, Dyes Pigments., 2021, 184, 108789.
14. R. Hou, M. Li, X. Ma, H. Huang, H. Lu, Q. Jia, Y. Liu, X. Xu, H. B. Li and Z. Bo, ACS Appl. Mater. Interfaces., 2020, 12, 46220-46230.
15. S. Feng, M. Li, N. Tang, X. Wang, H. Huang, G. Ran, Y. Liu, Z. Xie, W. Zhang and Z. Bo, ACS Appl. Mater. Interfaces., 2020, 12, 4638-4648.
16. S. Li, L. Zhan, F. Liu, J. Ren, M. Shi, C. Z. Li, T. P. Russell and H. Chen, Adv. Mater., 2018, 30, 1705208.
17. S. Li, L. Zhan, W. Zhao, S. Zhang, B. Ali, Z. Fu, T.-K. Lau, X. Lu, M. Shi, C.-Z. Li, J. Hou and H. Chen, J. Mater. Chem. A., 2018, 6, 12132-12141.
18. Y. Wang, Z. Liu, X. Cui, C. Wang, H. Lu, Y. Liu, Z. Fei, Z. Ma and Z. Bo, J. Mater. Chem. A., 2020, 8, 12495-12501.
19. Y. N. Chen, M. Li, Y. Wang, J. Wang, M. Zhang, Y. Zhou, J. Yang, Y. Liu, F. Liu, Z. Tang, Q. Bao and Z. Bo, Angew.Chem. Int. Ed., 2020, 59,22714-22720.
20. X. Liu, Y. Wei, X. Zhang, L. Qin, Z. Wei, H. Huang. Sci. China Chem., 2020, DOI: 10.1007/s11426-020-9868-8.
21. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Adv. Mater., 2011, 23,

1679-1683.
22. S. Wu, J Adhes., 1973, 5, 39-55.
23. J. Comyn, Int J Adhesion Adhes., 1992, 12, 145-149.

