Supporting Information

Boosting High Stability on BiVO₄ Photoanodes: In-situ Cocatalyst Passivation and Immobilization by Functional Fluorine Anions

Rui-Ting Gao,^[a] Lijun Wu,^[a] Shujie Liu,^[a] Kan Hu,^[a] Xianhu Liu,^[b] Jun Zhang,^{*[a]} and Lei Wang^{*[a]}

^[a] School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 235 West University Street, Hohhot 010021, China ^[b] Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University,

Zhengzhou 450002, China

* Corresponding authors: <u>cejzhang@imu.edu.cn</u> (J.Z.); <u>wanglei@imu.edu.cn</u> (L.W.)

Methods

1. Material preparation

BiOI was prepared according to previous reported method.¹ 100 ml KI (0.4 M) was added into 0.04 M Bi(NO₃)₃·5H₂O, in which HNO₃ was added to adjust the pH value of 1.7. This solution was mixed with a 40 ml ethanol solution containing 0.23 M p-benzoquinone. The anode deposition was performed at -0.1 $V_{Ag/AgCl}$ for 300 s to form BiOI. The dimethyl sulfoxide (DMSO) solution containing 0.2 M vanadyl acetylacetonate (VO(acac)₂) was dropped on the BiOI for annealing at 450 °C for 2 h. The annealed BiVO₄ was slowly stirred in 1 M NaOH for 30 minutes to remove excess V₂O₅. The asprepared BiVO₄ is noted as BVO in the manuscript.

For the preparation of $Co(CO_3)_xOH_y/BiVO_4$, the precursor solution containing 6 mM $Co(NO_3)_2 \cdot 6H_2O$ and 30 mM urea was thoroughly stirred. The BiVO₄ was put into the stainless steel reactor (50 mL) with a 30 mL precursor solution for reaction at 120 °C for 6 h. The preparation of F:Co(CO₃)_xOH_y/BiVO₄ is similar to that of Co(CO₃)_xOH_y/BiVO₄, only 4.7 mM ammonium fluoride (NH₄F) was added in precursor containing Co(NO₃)₂ · 6H₂O and urea.

For the preparation of Co_3O_4 and F:Co₃O₄. The precursor was prepared with 1.2 mM $Co(NO_3)_2 \cdot 6H_2O$, 8.4 mM urea, and 0.4 mM SnCl₄ in 20 mL deionized water. After being fully stirred, the BiVO₄ and precursor were put into the reactor for reaction at 120 °C for various times (10, 20, 30, and 40 min). Then, the sample was heating at 400 °C for 1 h. For the F:Co₃O₄, the sample and 0.05 g NH₄F were placed in a tube furnace for annealing at 400 °C for 1 h under Ar atmosphere. The F-treated BiVO₄ was soaked up-to-down in a 10 mL solution containing NH₄F (1 M) for 3 h.

2. Photoelectrochemical measurements

Photoelectrochemical measurements were measured in a standard three-electrode system with an electrochemical analyzer (CHI760D, CH Instruments, Inc.). The light source was simulated sunlight AM 1.5G (100 mW cm⁻², PLS-FX300HU, Beijing Perfectlight Technology Co., Ltd.). All samples were illuminated from the back sides. 1 M KBi solution with pH of 9.5 was used as the electrolyte. Photocurrent vs voltage (*J-V*) curves were recorded by scanning the potential from -0.7 to 0.6 $V_{Ag/AgCI}$ with a rate of 10 mV s⁻¹ under AM 1.5 G back illumination. Electrochemical impedance spectroscopy (EIS) was performed at 0.6 V_{RHE} with a small AC amplitude of 10 mV in the frequency range of 10⁻²-10⁵ Hz under back illumination. Mott-Schottky spectra were obtained in the voltage window of 0~0.6

V_{RHE} in the dark (increment: 10 mV, frequency: 1 kHz).

During the *J-t* measurement, various amounts of F anions (1 M) were added into KBi electrolyte (15 mL) without changing pH value. For comparison, 0.5 μ L Co²⁺ (0.1 M Co(NO₃)₂·6H₂O), 0.5 μ L Fe³⁺ (0.1 M Fe(NO₃)₃·9H₂O), and 0.5 μ L Ni²⁺ (0.1 M Ni(NO₃)₂·6H₂O) ions were added into KBi (15 mL). During the activation of Co₃O₄, 6 μ L NH₄F (1 M) was added into 15 ml KBi electrolyte. For the long-term stability measurement of Co(CO₃)_xOH_y/BiVO₄ in KBi with the additive F, 0.5 μ L NH₄F (1 M) was added into the fresh KBi and measured at 0.6 V_{RHE} under AM 1.5G back illumination. Incident light-electron conversion efficiency (IPCE) was measured at 1.23 V_{RHE} in 1 M KBi using Xe lamp (CEL-SLF-Vertex, CEAULIGHT Co., Ltd.). Use the following formula to calculate IPCE.

$$IPCE(\%) = \frac{J \times 1240}{\lambda \times p_{Light}} \times 100\% \qquad (1)$$

where *J* presents the photocurrent density (mA cm⁻²) obtained from the electrochemical workstation. λ and P_{light} are the incident light wavelength (nm) and the power density obtained at a specific wavelength (mW cm⁻²), respectively. Applied bias photon-to-current efficiency (ABPE) can be calculated using the following equation:

$$ABPE(\%) = \frac{J \times (1.23 - V_b)}{p_{total}}$$
(2)

J is the photocurrent density (mA cm⁻²) obtained from the electrochemical workstation. V_b refers to the applied bias versus RHE (V), and P_{total} is the total light intensity of AM 1.5 G (100 mV cm⁻²). The charge separation efficiency (η_{sep} , the yield of photo-generated holes reaching the semiconductor/electrolyte interface) and the surface charge transfer efficiency (η_{trans} , the yield of holes participating in the water oxidation reaction after reaching the electrode/electrolyte interface) can be calculated using the following formula .

$$\eta_{\text{surface}} = \frac{J_{H_2O}}{J_{Na_2SO_3}}$$
(3)
$$\eta_{\text{abs}\times\text{sep}} = \frac{J_{Na_2SO_3}}{7.5}$$
(4)

While J_{H_2O} and $J_{Na_2SO_3}$ are the photocurrent densities obtained in 1 M KBi without and with 0.2 M Na₂SO₃, 7.5 mA/cm² is the theoretical limit of BiVO₄ under AM 1.5 G illumination.

Photocurrent spectra were collected at 1.23 V_{RHE} in KBi in the range of 350-550 nm using amonichromatic light by a Xe-lamp (CEL-SLF-Vertex). The gas production was collected with a (Shimadzu, GC-2014C).

3. Materials characterization

The crystalline structure was identified by X-ray diffraction analysis (XRD, Rigaku RINT-2000) using Cu Kα radiation at 40 kV and 40 mA. The elemental composition was determined by X-ray photoelectron spectroscopy (XPS, ESCALAB 250xi, Thermo Fisher Scientific). The elemental contents in electrolyte was analyzed using inductively coupled plasma optical emission spectroscopy (ICP-OES-720ES, Agilent, USA). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out using FE-SEM-Supra 55 (Zeiss, Germany) and JEM-2100F (JEOL, Japan) systems. UV-visible diffuse reflectance spectra were performed on a UV-2600 (Shimadzu) spectrometer by using BaSO₄ as the reference.

Reference

^{1.} T. W. Kim, K.-S. Choi. Science 2014, 343, 990-994.

Photoanode	J (mA cm ⁻² @1.23 V _{RHE})	Stability	Electrolyte	Reference
Co(CO ₃) _x OH _y /BiVO ₄	5.1 5.1	10 h@0.6 V _{RHE} 100 h@0.6 V _{RHE}	1 M KBi 1 M KBi+F	This work.
NiOOH/FeOOH/BiVO ₄	4.8	500 h@0.6 V _{RHE}	1 M KBi+ V₂O 5	<i>Nature Energy</i> 2018, 3, 53.
Mo:BiVO4/Ni/Sn	2.6 @0.6 V _{RHE}	1100 h@0.6 V _{RHE}	1 M KBi+ Fe²⁺	<i>Nature Energy</i> 2016, 2, 16191.
Etched-NiOOH/BiVO ₄	5.43	200 h@0.8 V _{RHE}	1 M KBi+ Fe²⁺	<i>Angew. Chem. Int. Ed.</i> 2020, 59, 6213.
NiFeO _x /BiVO ₄	5.54	100 h@1.23 V _{RHE}	1 M KBi	Adv. Mater. 2020, 2001385.
NiOOH/NiOOH/2- BiVO4 dual electrode	5.87	100 h@1.23 V _{RHE}	1 M KBi	<i>Adv. Mater.</i> 2018, 30, 1800486.
NiOOH/black P/BiVO ₄	4.48	60 h@1.23 V _{RHE}	0.5 M KPi	<i>Nature Commun.</i> 2019, 10, 2001.
NiOOH/FeOOH/BiVO4	4.2	48 h@0.6 V _{RHE}	0.5 M KPi	<i>Science</i> 2014, 343, 990.
NiFeY LDH/BiVO ₄	5.2	24 h@0.8 V _{RHE}	1 M KBi	ACS Catal. 2020, 10, 10570.
Fh/BiVO4	4.78	50 h@0.61 V _{RHE}	0.4 M KBi	ACS Catal. 2017, 7, 1868.
NiOOH/FeOOH/ TiO _{2-x} /BiVO ₄	6.12	100 h@1.23 V _{RHE}	0.5 M KPi	<i>Adv. Energy Mater.</i> 2019, 9, 1901287.
Molecular Co ₄ O ₄ /BiVO ₄	5.0	140 s@0.7 V _{RHE}	0.5 KBi	<i>Angew. Chem. Int. Ed.</i> 2017, 56, 6911.

Table S1. Comparison of PEC activities and stability for cocatalysts decorated on BiVO₄ photoanodes.

Figure S1. XRD patterns of $Co(CO_3)_xOH_y$ and $F:Co(CO_3)_xOH_y$. The powders of samples were collected from the bottom of autoclaves.

Figure S2. (a-d) SEM images of (a,c) $Co(CO_3)_xOH_y/BVO$ and (b,d) $F:Co(CO_3)_xOH_y/BVO$ (a,b) before

and (c,d) after *J*-*t* measurement.

Figure S3. (a-d) TEM images of $Co(CO_3)_xOH_y/BVO$.

Figure S4. (a-f) TEM images of F:Co(CO₃)_xOH_y/BVO (a-c) before and (d-f) after *J-t* measurement.

Figure S5. *J-V* curves of Co(CO₃)_xOH_y/BVO and F:Co(CO₃)_xOH_y/BVO in KBi under dark.

Figure S6. (a-d) XPS (a) Bi 4f, (b) V 2p, (c) Co 2p, (d) O 1s, and (e) F 1s spectra of $F:Co(CO_3)_xOH_y/BVO$ before and after *J-t* meaurement of 20 h in KBi under AM 1.5G illumination; (f) element contents of corresponding electrodes.

The F 1s shows a main peak at 685 eV, and the peak intensity of F 1s is decreased after *J-t* meaurement, accompanying with a shift towards the lower B.E. (**Figure S6e**).

Figure S7. Oxygen and hydrogen evolution produced by gas chromatography and faradaic efficiency of $Co(CO_3)_xOH_y/BVO$ at 1.23 V_{RHE} for 5 h under AM 1.5G illumination in 1 M KBi+F.

Figure S8. F 1s XPS spectra of Co(CO₃)_xOH_y/BVO in KBi+F at 0.6 V_{RHE} for various times.

Figure S9. (a-c) SEM images of Co(CO₃)_xOH_y/BVO in (a) KBi+Co, (b) KBi+Fe, and (c) KBi+Ni electrolytes after *J-t* measurements for 1-3 h.

Figure S10. (a-c) TEM images of as-prepared Co₃O₄/BVO; (d-f) TEM images of activated Co₃O₄/BVO after *J-t* measurement in KBi+F; (g) TEM-EDS mapping of activated Co₃O₄/BVO after *J-t* measurement. The activated Co₃O₄/BVO was performed under *J-V* test for scanning in KBi+F.

Figure S11. J-V curves of Co₃O₄/BVO electrodes with various hydrothermal times in KBi under AM

1.5G illumination.

Figure S12. (a) *J-V* curves of BVO and F treated BVO in KBi under AM 1.5G illumination; (b) *J-t* curves of BVO and F treated BVO in KBi at 0.8 V_{RHE} under AM 1.5G illumination. The BVO was treated in 1 M NH₄F for 3 h (noted as F treated BVO).

Figure S13. (a) *J-V* curve of F-Co₃O₄/BVO in 1 M KBi; (b) *J-t* plots of correspond sample at 0.8 V_{RHE} for activation. The content of NH₄F powder was controlled of 0.05 g; (c) *J-V* curves of F-Co₃O₄/BVO in KBi with various scanning cycles according to *J-t* measurement. All measurements were tested under AM 1.5G illumination.

For comparison, the F doped Co₃O₄ cocatalyst after thermal treatment was synthesized. The *J-V* curve of F-Co₃O₄/BVO electrode shows a low photocurrent in KBi (**Figure S13a**). The electrode was then applied a bias at 0.8 V_{RHE} at a certain intervals under AM 1.5G illumination. The *J-t* curve (**Figure S13b**) exhibits that the photocurrent is initially decreased rapidly, and then rises gradually, accompanying with the improved *J-V* curve as illustrated in **Figure S13c**. The photocurrent reaches up to a maximum of 4.1 mA cm⁻² at 1.23 V_{RHE}, with a negative shift of onset potential from 0.65 V_{RHE} (initial cycle) to 0.38 V_{RHE}. Further TEM examination (**Figure S14**) confirms that after the stability measurement, the cocatalyst layer becomes thinner 5~10 nm in thickness in contrast to the as-prepared electrode with a cocatalyst layer of 20~30 nm. This is consistent with the result of F:Co(CO₃)_xOH_y/BVO after *J-t* test, which is due to the transformation from F-Co₃O₄ to F:CoOOH during *J-t* measurement. The dissolution of cocatalyst is confirmed by XPS data (**Figure S15**), in which Co is reduced from 7.7 at.% to 6.48 at.%, accompanying with the loss of F from 4.76 at.% to 2.8 at.%.

Figure S14. (a-c) TEM images of as-prepared F-Co₃O₄/BVO; (d-f) TEM images of activated F-Co₃O₄/BVO in KBi; (g-i) TEM images of activated F-Co₃O₄/BVO after *J-t* measurement; (j) TEM-EDS mapping of activated F-Co₃O₄/BVO after *J-t* measurement. The activated F-Co₃O₄/BVO was performed in KBi under *J-t* test with various scans.

Figure S15. (a) Bi 4f, (b) V 2p, (c) Co 2p, (d) O 1s, (f) F 1s XPS spectra of F-Co₃O₄/BVO before and after activation; (f) atomic ratio of corresponding samples.

Figure S16. (a) Mott-Schottky measurements of $Co(CO_3)_xOH_y/BVO$ and $F:Co(CO_3)_xOH_y/BVO$ in KBi; (b) *J-V* curves of $Co(CO_3)_xOH_y/BVO$ in KBi without and with Na₂SO₃; (c) *J-V* curves of $F:Co(CO_3)_xOH_y/BVO$ in KBi without and with Na₂SO₃; (d) surface separation efficiency and (e) production of light absorption and charge separation of $Co(CO_3)_xOH_y/BVO$ and $F:Co(CO_3)_xOH_y/BVO$.

Figure S17. (a-c) XPS depth profiles of (a) Bi 4f, (b) V 2p, and (c) O 1s spectra of $Co(CO_3)_xOH_y/BVO$ in KBi+F under *J-t* measurement at 0.6 V_{RHE} for 2 h under AM 1.5G illumination.

Figure S18. (a) Mott-Schottly plots and (b) UV-vis spectra of BVO, $Co(CO_3)_xOH_y/BVO$, and F: $Co(CO_3)_xOH_y/BVO$.

Figure S19. Open circuit potentials of BVO, $Co(CO_3)_xOH_y/BVO$, and $F:Co(CO_3)_xOH_y/BVO$ electrodes.

Figure S20. IPCE values of $Co(CO_3)_xOH_y/BVO$ and $F:Co(CO_3)_xOH_y/BVO$ electrodes.

Photoanode	Electrolyte	η _{trans} @1.23 V _{RHE}	IPCE @1.23 V _{RHE}	Reference
Co(CO ₃) _x OH _y /BiVO ₄	1 M KBi (pH=9.5)	89%	85%@430 nm	J. Mater. Chem. A 2020, 8, 2563.
Co-Pi/BiVO ₄	0.5 M KPi (pH=7)	71%	70%@450 nm	Energy Envrion. Sci. 2018, 11, 1299.
Co-Pi/BiVO4/ZnO	0.3 M Na ₂ SO ₄ +KPi (pH=7.5)		40%@400 nm	Nano Energy 2017, 32, 232.
Co-Pi/BiVO4 /Ta:TiO2	0.5 M KPi (pH=7)		50%@450 nm	ACS Cent. Sci. 2016, 2, 80.
Co-Pi/BiVO ₄	0.1 M KPi (pH=7)		70%@450 nm	ChemSusChem 2012, 5, 1420.
Co-Pi/BiVO4/WO3	0.1 M KPi (pH=7)	75%	60%@350 nm	ACS Appl. Mater. Interfaces 2018, 11, 5623.
Co-Ci/H,Mo:BiVO4	0.1 M KPi (pH 7.0)	95%	80%@450 nm	ACS Nano 2015, 9, 11820.
U-CoOOH/BiVO4	0.2 M Na ₂ SO ₄ (pH=7)	89%	76%@420 nm	J. Mater. Chem. A 2019, 7, 4415.
Co4O4/BiVO4	0.5 M KBi (pH=9.3)	90%	93%@420 nm	Angew. Chem. Int. Ed. 2017, 56, 6911.
CoOx/BiVO4 /WO3/SnO2	0.5 M KPi (pH=7)	85%	55%@450 nm	ACS Appl. Mater. Interfaces 2017, 9, 1479.
Co(CO ₃) _x OH _y /BiVO ₄	1 M KBi without and with F ⁻ (pH=9.5)	85%	83%@450 nm	This work.

Table S2. Comparison of IPCE values and charge efficiency for BiVO₄-based photoelectrodes.