Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

1

Supporting Information

2 A membrane-less desalination battery with ultrahigh energy efficiency

- 3 Lu Guo¹, Yang Shang¹, Guangzhao Wang², Jun Jin³, Zhi Yi Leong¹, Shaozhuan Huang⁴,
- 4 Chengding Gu⁵, Meng Ding¹, Mei Er Pam¹, Sareh Vafakhah¹, Xueliang Li¹, Shengyuan A.
- 5 Yang² and Hui Ying Yang *1
- 6 ¹ Pillar of Engineering Product Development, Singapore University of Technology and
- 7 Design, 8 Somapah Road, 487372, Singapore.
- 8 ² Research Laboratory for Quantum Materials, Singapore University of Technology and
- 9 Design, Singapore 487372, Singapore
- ³ Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan,
 430074, China
- 12 ⁴ Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education,
- 13 South-Central University for Nationalities, Wuhan, Hubei, 430074, China
- 14 ⁵ School of materials and energy, Yunnan University, Kunming 650091, China
- 15 *Corresponding author. Tel.: +65 6303 6663; Fax: +65 6779 5161. E-mail address:
- 16 yanghuiying@sutd.edu.sg (H. Y. Yang).

17

18

2 Figure S1. (a) Nitrogen sorption isotherms of NiCo MOF and NiCo MOF @BP. (b) BJH

3 pore size distributions of NiCo MOF and NiCo MOF @BP.

4

5

6 Figure S2. SEM image of the Ag@rGO anode.

2 Figure S3. Thermogravimetric analysis (TGA) of Ag@rGO showing the weight loss in

3 percent.

5 Figure S4. (a) Powder X-ray diffraction patterns of the as-prepared NiCo MOF, NiCo MOF

6 @BP and (b) Ag@rGO.

2 Figure S5. (a) Raman spectra of NiCo MOF and NiCo MOF @BP cathode. (b) Raman
3 spectra of Ag@3DG and GO.

4 Characteristic A1g, B2g and A2g modes belonging to BP were observed for NiCo MOF@BP
5 ¹.

6 The Raman spectra of GO and Ag@rGO were studied. Typical peaks at 1350 cm⁻¹ and 1580
7 cm⁻¹ could be attributed to D and G bands of GO. After successful reduction, the value of
8 I_D/I_G decreased from 1.01 to 0.99 which implied a higher degree of graphitization ².

1 Figure S6. DOS of NiCo MOF. The Fermi level is set to 0.

2 Lattice parameters calculated for NiCo MOF were 20.06 Å \times 3.29 Å \times 6.22 Å, which agreed well with previous experimental values ³. Spin up and down parts of the density of states 3 (DOS) for NiCo MOF (Figure S6) were asymmetrical which suggested the existence of 4 unpaired electrons. Based on these results, the total magnetic moment of NiCo MOF was 5 calculated to be +6µB/ supercell where the main contributions from two Co (or Ni) atoms 6 were +2.51/+2.55 (or -1.50/+1.59) μ B/ supercell respectively. Additionally, an energy gap 7 of 0.77 eV appeared in the spin up states whereas no energy gap was observed in the spin 8 down states. The asymmetrical density of states illustrated the half-metallicity nature of NiCo 9 MOF and the compromised electrical conductivity of NiCo MOF. As such, it was reasonable 10 to incorporate a BP scaffold to enhance its electrical conductivity. 11

13 Figure S7. A typical galvanostatic charge/discharge curve of NiCo MOF@BP. Red region:

2 The chemical reaction equations of the two-stage sodium insertion/extraction process are3 indicated below:

4
$$N_{1_x}Co_{3-x}(OH)_2(C_8H_4O4)_2(H_2O)_4 + Na^+ + e^- \leftrightarrow NaN_{1_x}Co_{3-x}O(OH)(C_8H_4O4)_2(H_2O)_4$$
 (1)

5 NaNi_xCo_{3-x} O(OH) (C₈H₄O4)₂(H₂O)₄ + Na⁺ + e⁻
$$\leftrightarrow$$
 Na₂Ni_xCo_{3-x} O₂(C₈H₄O4)₂(H₂O)₄ (2)

6

8 Figure S8. Nyquist spectra of NiCo MOF and NiCo MOF@BP after 20th cycle.

- 9 Both cathodes show good electrical conductivity as indicated by their Nyquist plots.
- 10 Understandably, the presence of BP in NiCo MOF@BP composite results in a slightly
- 11 smaller interfacial resistance (R_s) and charge transfer resistance (R_{ct}) .

2 Figure S9. Galvanostatic intermittent titration technique (GITT) profiles of the NiCo MOF

- 3 cathode in the desalination battery using a pulse current of 80 mA g⁻¹ for 10min and intervals
- 4 of 10 min in a stable cycle after 1-cycle activation process.

6 Figure S10. Log i-log v plots at two redox peaks of NiCo MOF and NiCo MOF @BP at

⁷ various scan rates.

2 Figure S11. (a, b) CV curves indicate the surface capacitive contribution of NiCo MOF and

3 NiCo MOF @BP at 2 and 100 mV s⁻¹.

4

2 Figure S12. Photograph of the desalination cell configuration.

3

- 5 Figure S13. Specific capacity of the desalination battery with different mass ratio of
- 6 Ag@rGO versus NiCo MOF@BP (red column: capacity calculated based on both side active

1 materials; grey column: capacity calculated based on cathode side active material).

	_	
Weight Weight ratio	Ag@rGO (mg)	NiCo MOF@BP (mg)
0.5	2	4
1.0	4	4
1.4	14	10
2.0	20	10
3.5	14	4

Table S1. The weight ratio of both electrodes

3

2

4 Figure S14. Specific capacity of the desalination battery with different feed concentration.

2 Figure S15. The concentration change profiles and the corresponding salt adsorption capacity
3 for the desalination cycles.

To further explore the desalination performance of the full cell, this device is tested with a 4 current density of 0.6 A g⁻¹ and about 5000 ppm feed solution under real-time monitoring of 5 6 the conductivity of the effluent. In a typical desalination cycle, the effluent concentration changes corresponding to the voltage variation. During the charging process, the sodium ions 7 in influent migrate to the cathode materials, resulting in a conductivity decrease in the 8 effluent, while chloride ions are removed by the Ag@rGO anode. The salt ions are released 9 back into the electrolyte during the discharging process, causing the increase of the effluent 10 concentration. As can be noticed, the effluent concentration varies inconsistently with the cell 11 potential. 12

2 Figure S16. XRD patterns of NiCo MOF@BP electrode before and after long cycling in 2 M

3 NaCl solution. The characteristic peaks for graphite paper substrate and NiCo MOF@BP

4 nanosheets are marked by asterisk and diamond, respectively.

Electrode materials	Deionizatio n system	Initial TDS (mg L ⁻¹)	Salt removal capacity (mg g ⁻¹)	Applied voltage (V)	Time (min)	Energy consumption (Wh g ⁻¹)	Energy recover y (%)	Publis h year
Activated carbon	FCDI	35000	-	1.2	300	-	25	20194
Nickel Hexacyanofer rate	CID	1170	34	1.5	54	0.035	-	20165
Porous carbon	MCDI	1170	-	1.6	4	0.260	40	20126
Porous carbon	cdi	1170	13	0.3-1.2	40	0.236	30	20157
Porous carbon	MCDI	500	-	1.8	27	0.444	83	20138

5 **Table S1.** Comparison of the desalination performance with different desalination system.

Activated carbon	CDI	468	13	1.2	20	0.342	-	20199
Activated carbon	CDI	585	10.1	1.2	45	0.154	49.6	2019 ¹ 0
CuFe@NiFe PBA	MCDI	2925	71.8	1.0	240	0.0376	-	2019 ¹
N, S-HTPC	CDI	500	25.95	1.2	150			2019 ¹
Activated carbon	FCDI	5000	-	2.0	500	0.25	30	2019 ¹ 2
3D printed N- doped GO/CNT	MCDI	2500	75	1.4	100	0.331	27	2019 ¹ 3
Activated carbon	MCDI	2000	-	1.3	4	0.533	40	2020 ¹ 4
Ti ₃ C ₂ Tx MXene film	CDI	585	68	1.2	166	0.24	5.44	2020 ¹ 5
Ferricyanide	MC-RCDI	5850	67.8	1.2	2h	0.553		2019 ¹ 6
Carbon aerogel	CDI	5200	7.1	1.3	~120	0.21	30	2008 ¹ 7
NaI/VCl ₂	FCDI	19000	-	0.3-1.1	~40	0.026	50	2018 ¹ 8
Ag coated porous carbon	MCDI	3900	23.2	0.7	20	0.348	-	2017 ¹ 9
CNT/graphen e	CDI	780	26.42	2	~60	1.026		2013 ² 0
MOF derived porous carbon polyhedra	CDI	500	13.86	1.2	80			2015 ² 1
NMO	HCDI	5850	31.2	1.2	30			2014 ² 2

3D Graphene/Me tal Oxide Nanoparticle Hybrids	CDI	6000	24.2	1.2	~3.8	2013 ² 3
Exfoliated MoS ₂	CDI	23400	8.81	1.2	150	2017 ² 4
NiAl-LDH	CDI	585	81.2	1.2	~100	2014 ² 5
Sub- micrometer carbon beads	CDI	29250	11.5	1.2	60	2017 ² 6
K _{0.03} Cu[Fe(C N) ₆] _{0.65} ·0.43H ₂ O	CDI	500	23.2	1.2	100 (Half cycle)	2018 ² 7
N-doped 3D graphene	CDI	86	18.6	1.2	~14	2017 ² 8
N, P, S co- doped hollow carbon polyhedra	CDI	500	22.19	1.2	120 (Half cycle)	2018 ² 9
MnO ₂	HCDI	500	14.9	1.0	10	2018 ³ 0
MOF/polypyr role hybrids	CDI	584	11.34	1.2	30 (Half cycle)	2019 ³
Manganese Oxide- Coated, Vertically Aligned CNTs	CDI	100	28.66	1.2	40 (Half cycle)	2018 ³ 2
Hierarchical hole-	CDI	572	29.6	2	30 (Half	20183

enhanced 3D					cycle)			3
graphene								
3D	CDI	500	22.09	1.2	120			20183
intercalated					(Half			4
graphene					cycle)			
sheet-sphere								
nanocomposit								
e								
Tunnel	HCDI	1600	27.8	1.2	15			20183
structured					(Half			5
manganese					cycle)			
oxide								
nanowires								
Porous Cryo-	CDI	10000	45	1.2	7.5			20183
Dried MXene					(Half			6
					cycle)			
Iodide	FDI	5850	69	1	1	0.248		20183
confined in					(Half			7
Carbon					cycle)			
Nanopores								
Activated	HCDI	60g	-	1.2	-	0.44	36	20183
carbon								8
Na _{0.44} MnO ₂	MCDI	890	57.4	1.5	90			20173
								9
NMO	MCDI	760	68.5	1.5	120	0.46		20174
								0
Free-Standing	MCDI	1000	43.3	1.4	60			20184
Electrodes								1
Derived from								
Metal-								
Organic								
Frameworks/								
Nanofibers								
Hybrids								
	1	I	1	1	1	1	1	1

MOF-	MCDI	1500	46.7	1.4	60	0.319		20194
Derived								2
TiO ₂ @Porous								
Carbon								
Bimetallic	MCDI	750	45.62	1.4	120			20172
MOF derived								
porous carbon								
FePO ₄ /RGO	MCDI	750	100	1.4	210	0.357	35	2018 ³ 6
Li ₄ Ti ₅ O ₁₂ @C	MCDI	2500	25	1.4	120	0.284		2019 ⁴ 3
Prussian blue	MCDI	700	96	1.4	30	0.079	40	20174
								4
Ar plasma	CDI	500	26.8	1.4	30			20184
modification								5
of 2D MXene								
								<u> </u>
NaTi ₂ (PO ₄) ₃ /r	MCDI	1000	120	1.4	60			20174
NaTi ₂ (PO ₄) ₃ -	MCDI	2500	105	1.4	70	0.127	30	20184
AgNPs								,
3D graphene	CDI	250	36.1	1.2	60			20174
oxide and								8
alcohol								
composites								
Freestanding	MCDI	2500	130	1.4	130	0.23	39	20194
PB/Graphene								9
Aerogel								
Na ₃ V ₂ (PO ₄) ₃	MCDI	1000	98	1.4	120			20185
@C								0
Na ₃ V ₂ (PO ₄) ₃ /	MCDI	1000	107.5	1.4	105			20195
graphene								1
aerogel								

NiCo	CDI	1M	103.1	1.4	20	0.034	67.01	This
MOF@P								work

2

3 **Reference:**

4	1.	A. Favron, F. A. Goudreault, V. Gosselin, J. Groulx, M. Cote, R. Leonelli, J. F. Germain, A.
5		L. Phaneuf-L'Heureux, S. Francoeur and R. Martel, Second-Order Raman Scattering in
6		Exfoliated Black Phosphorus, Nano letters, 2018, 18, 1018-1027.

- 7 2. M. Ding, W. Shi, L. Guo, Z. Y. Leong, A. Baji and H. Y. Yang, *Bimetallic metal–organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination, J. Mater. Chem. A*, 2017, 5, 6113-6121.
- 10 3. S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J.
- Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao and Z.
 Tang, Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution, Nature Energy, 2016, 1.
- H. Lim, Y. Ha, H. B. Jung, P. S. Jo, H. Yoon, D. Quyen, N. Cho, C.-Y. Yoo and Y. Cho, *Energy storage and generation through desalination using flow-electrodes capacitive deionization, Journal of Industrial and Engineering Chemistry*, 2020, **81**, 317-322.
- S. Porada, P. Bukowska, A. Shrivastava, P. Biesheuvel and K. C. Smith, Nickel
 Hexacyanoferrate Electrodes for Cation Intercalation Desalination, arXiv preprint arXiv:1612.08293, 2016.
- R. Zhao, P. M. Biesheuvel and A. van der Wal, *Energy consumption and constant current operation in membrane capacitive deionization*, *Energy & Environmental Science*, 2012, 5,
 9520.
- 7. T. Kim, J. E. Dykstra, S. Porada, A. van der Wal, J. Yoon and P. M. Biesheuvel, *Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, Journal of colloid and interface science*, 2015, 446, 317-326.
- P. Dlugolecki and A. van der Wal, *Energy recovery in membrane capacitive deionization*,
 Environmental science & technology, 2013, 47, 4904-4910.
- 9. Y.-J. Chen, C.-F. Liu, C.-C. Hsu and C.-C. Hu, An integrated strategy for improving the
 desalination performances of activated carbon-based capacitive deionization systems,
 Electrochimica Acta, 2019, 302, 277-285.
- 31 10. Y.-W. Chen, J.-F. Chen, C.-H. Lin and C.-H. Hou, *Integrating a supercapacitor with* 32 *capacitive deionization for direct energy recovery from the desalination of brackish water*,
 33 *Applied Energy*, 2019, 252, 113417.
- Y. Zhao, B. Liang, X. Wei, K. Li, C. Lv and Y. Zhao, A core-shell heterostructured
 CuFe@NiFe Prussian blue analogue as a novel electrode material for high-capacity and stable capacitive deionization, Journal of Materials Chemistry A, 2019, 7, 10464-10474.
- C. Zhang, L. Wu, J. Ma, A. N. Pham, M. Wang and T. D. Waite, *Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination, Environmental science & technology*, 2019, 53, 13364-13373.
- 40 13. S. Vafakhah, G. J. Sim, M. Saeedikhani, X. Li, P. Valdivia y Alvarado and H. Y. Yang, 3D

1 printed electrodes for efficient membrane capacitive deionization, Nanoscale Advances, 2019, 2 1, 4804-4811. 3 14. C. Tan, C. He, J. Fletcher and T. D. Waite, Energy recovery in pilot scale membrane CDI 4 treatment of brackish waters, Water research, 2020, 168, 115146. 5 15. J. Ma, Y. Cheng, L. Wang, X. Dai and F. Yu, Free-standing $Ti_3C_2T_x$ MXene film as binder-6 free electrode in capacitive deionization with an ultrahigh desalination capacity, Chemical 7 Engineering Journal, 2020, 384, 123329. N. Kim, S. P. Hong, J. Lee, C. Kim and J. Yoon, High-Desalination Performance via Redox 8 16. 9 Couple Reaction in the Multichannel Capacitive Deionization System, ACS Sustainable 10 Chemistry & Engineering, 2019, 7, 16182-16189. 11 17. P. Xu, J. E. Drewes, D. Heil and G. Wang, Treatment of brackish produced water using 12 carbon aerogel-based capacitive deionization technology, Water research, 2008, 42, 2605-13 2617. 18. F. Chen, X. Hou, Q. Liang, X. Hu, Y. Zhou, Q. Ru and S.-J. Hu, Coupling Desalination and 14 Energy Storage with Redox Flow Electrodes, Nanoscale, 2018, DOI: 10.1039/c8nr02737d. 15 H. Yoon, J. Lee, S. Kim and J. Yoon, Hybrid capacitive deionization with Ag coated carbon 16 19. 17 composite electrode, Desalination, 2017, 422, 42-48. 20. Y. Wimalasiri and L. Zou, Carbon nanotube/graphene composite for enhanced capacitive 18 deionization performance, Carbon, 2013, 59, 464-471. 19 Y. Liu, X. Xu, M. Wang, T. Lu, Z. Sun and L. Pan, Metal-organic framework-derived porous 20 21. carbon polyhedra for highly efficient capacitive deionization, Chemical communications, 21 22 2015, **51**, 12020-12023. 23 22. J. Lee, S. Kim, C. Kim and J. Yoon, Hybrid capacitive deionization to enhance the 24 desalination performance of capacitive techniques, Energy Environ. Sci., 2014, 7, 3683-3689. 25 23. H. Yin, S. Zhao, J. Wan, H. Tang, L. Chang, L. He, H. Zhao, Y. Gao and Z. Tang, Threedimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive 26 27 deionization of saline water, Advanced materials, 2013, 25, 6270-6276. 24. 28 F. Xing, T. Li, J. Li, H. Zhu, N. Wang and X. Cao, *Chemically exfoliated MoS*₂ for capacitive 29 deionization of saline water, Nano Energy, 2017, 31, 590-595. X. Lei, B. Wang, J. Liu, Z. Ye, Z. Chang, M. Jiang and X. Sun, Three-dimensional NiAl-30 25. 31 mixed metal oxide film: preparation and capacitive deionization performances, RSC Adv., 32 2014, 4, 41642-41648. B. Krüner, P. Srimuk, S. Fleischmann, M. Zeiger, A. Schreiber, M. Aslan, A. Quade and V. 33 26. 34 Presser, Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with 35 high performance stability, Carbon, 2017, 117, 46-54. 27. S. Choi, B. Chang, S. Kim, J. Lee, J. Yoon and J. W. Choi, Battery Electrode Materials with 36 37 Omnivalent Cation Storage for Fast and Charge-Efficient Ion Removal of Asymmetric Capacitive 2018, DOI: 38 Deionization, Advanced Functional Materials, 10.1002/adfm.201802665, 1802665. 39 40 28. A. M. Abdelkader and D. J. Fray, Controlled electrochemical doping of graphene-based 3D 41 nanoarchitecture electrodes for supercapacitors and capacitive deionisation, Nanoscale, 42 2017, 9, 14548-14557. 43 29. J. Zhang, J. Fang, J. Han, T. Yan, L. Shi and D. Zhang, N, P, S co-doped hollow carbon 44 polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization,

1		Journal of Materials Chemistry A, 2018, 6, 15245-15252.
2	30.	T. Wu, G. Wang, S. Wang, F. Zhan, Y. Fu, H. Qiao and J. Qiu, Highly Stable Hybrid
3		Capacitive Deionization with a MnO_2 Anode and a Positively Charged Cathode,
4		Environmental Science & Technology Letters, 2018, 5, 98-102.
5	31.	Z. Wang, X. Xu, J. Kim, V. Malgras, R. Mo, C. Li, Y. Lin, H. Tan, J. Tang, L. Pan, Y. Bando,
6		T. Yang and Y. Yamauchi, Nanoarchitectured metal–organic framework/polypyrrole hybrids
7		for brackish water desalination using capacitive deionization, Materials Horizons, 2019, 6,
8		1433-1437.
9	32.	W. Shi, X. Zhou, J. Li, E. R. Meshot, A. D. Taylor, S. Hu, JH. Kim, M. Elimelech and D. L.
10		Plata, High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically
11		Aligned Carbon Nanotubes, Environmental Science & Technology Letters, 2018, 5, 692-700.
12	33.	J. Li, B. Ji, R. Jiang, P. Zhang, N. Chen, G. Zhang and L. Qu, <i>Hierarchical hole-enhanced 3D</i>
13		graphene assembly for highly efficient capacitive deionization, Carbon, 2018, 129 , 95-103.
14	34.	Z. U. Khan, T. Yan, L. Shi and D. Zhang, Improved capacitive deionization by using 3D
15		intercalated graphene sheet-sphere nanocomposite architectures, Environmental Science:
16		Nano, 2018, 5 , 980-991.
17	35.	B. W. Byles, D. A. Cullen, K. L. More and E. Pomerantseva, <i>Tunnel structured manganese</i>
18		oxide nanowires as redox active electrodes for hybrid capacitive deionization, Nano Energy,
19		2018, 44, 476-488.
20	36.	W. Bao, X. Tang, X. Guo, S. Choi, C. Wang, Y. Gogotsi and G. Wang, Porous Cryo-Dried
21		MXene for Efficient Capacitive Deionization, Joule, 2018, 2, 778-787.
22	37.	J. Lee, P. Srimuk, S. Carpier, J. Choi, R. L. Zornitta, C. Kim, M. Aslan and V. Presser,
23		Confined Redox Reactions of Iodide in Carbon Nanopores for Fast and Energy-Efficient
24		Desalination of Brackish Water and Seawater, ChemSusChem, 2018, 11, 3460-3472.
25	38.	A. Rommerskirchen, C. J. Linnartz, D. Müller, L. K. Willenberg and M. Wessling, Energy
26		Recovery and Process Design in Continuous Flow-Electrode Capacitive Deionization
27		Processes, ACS Sustainable Chemistry & Engineering, 2018, 6, 13007-13015.
28	39.	F. Chen, Y. Huang, L. Guo, M. Ding and H. Y. Yang, A dual-ion electrochemistry
29		deionization system based on AgCl-NMO Electrodes, Nanoscale, 2017, DOI:
30		10.1039/c7nr01861d.
31	40.	F. Chen, Y. Huang, L. Guo, L. Sun, Y. Wang and H. Y. Yang, Dual-ions electrochemical
32		deionization: a desalination generator, Energy Environ. Sci., 2017, DOI:
33		10.1039/c7ee00855d.
34	41.	M. Ding, K. K. R. Bannuru, Y. Wang, L. Guo, A. Baji and H. Y. Yang, Free-Standing
35		Electrodes Derived from Metal-Organic Frameworks/ Nanofibers Hybrids for Membrane
36		Capacitive Deionization, Advanced Materials Technologies, 2018, 3, 1800135.
37	42.	M. Ding, S. Fan, S. Huang, M. E. Pam, L. Guo, Y. Shi and H. Y. Yang, Tunable
38		Pseudocapacitive Behavior in Metal–Organic Framework-Derived TiO ₂ @Porous Carbon
39		Enabling High-Performance Membrane Capacitive Deionization, ACS Applied Energy
40		<i>Materials</i> , 2019, 2 , 1812-1822.
41	43.	L. Guo, D. Kong, M. E. Pam, S. Huang, M. Ding, Y. Shang, C. Gu, Y. Huang and H. Y. Yang,
42		The efficient faradaic $Li_4Ti_5O_{12}@C$ electrode exceeds the membrane capacitive desalination
43		performance, Journal of Materials Chemistry A, 2019, 7, 8912-8921.
44	44.	L. Guo, R. Mo, W. Shi, Y. Huang, Z. Y. Leong, M. Ding, F. Chen and H. Y. Yang, A

- Prussian blue anode for high performance electrochemical deionization promoted by the
 faradaic mechanism, Nanoscale, 2017, DOI: 10.1039/c7nr03579a.
- 3 45. L. Guo, X. Wang, Z. Y. Leong, R. Mo, L. Sun and H. Y. Yang, *Ar plasma modification of 2D MXene Ti₃C₂T_x nanosheets for efficient capacitive desalination, FlatChem*, 2018, 8, 17-24.
- 5 46. Y. Huang, F. Chen, L. Guo and H. Y. Yang, Ultrahigh performance of a novel electrochemical deionization system based on a NaTi₂(PO₄)₃/rGO nanocomposite, J. Mater.
 7 Chem. A, 2017, DOI: 10.1039/c7ta03725b.
- 8 47. Y. Huang, F. Chen, L. Guo, J. Zhang, T. Chen and H. Y. Yang, Low energy consumption
 9 dual-ion electrochemical deionization system using NaTi₂(PO₄)₃-AgNPs electrodes,
 10 Desalination, 2018, DOI: 10.1016/j.desal.2018.02.006.
- Z. Y. Leong, G. Lu and H. Y. Yang, *Three-dimensional graphene oxide and polyvinyl alcohol composites as structured activated carbons for capacitive desalination*, *Desalination*, 2017,
 DOI: 10.1016/j.desal.2017.07.018.
- 14 49. S. Vafakhah, L. Guo, D. Sriramulu, S. Huang, M. Saeedikhani and H. Y. Yang, *Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System*, ACS applied materials & interfaces, 2019, 11, 598917 5998.
- 18 50. W. Zhao, L. Guo, M. Ding, Y. Huang and H. Y. Yang, Ultrahigh-Desalination-Capacity
 19 Dual-Ion Electrochemical Deionization Device Based on Na₃V₂(PO₄)₃@C-AgCl Electrodes,
 20 ACS applied materials & interfaces, 2018, 10, 40540-40548.
- 21 51. W. Zhao, M. Ding, L. Guo and H. Y. Yang, *Dual-Ion Electrochemical Deionization System*22 with Binder-Free Aerogel Electrodes, Small, 2019, 15, e1805505.
- 23