Supporting Information

Engineering Valence State of ZIF-67 by Cu₂O for Efficient Nonenzymatic Glucose

Detection

Nian Yang, Kailu Guo, Yanwen Zhang, Cailing Xu*

State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

*E-mail: xucl@lzu.edu.cn

Experimental sections

Reagents and materials

Copper(II) chloride dehydrate (CuCl₂·2H₂O, Fengyue, Tianjin, China, \geq 99%), Sodium dodecyl sulfate (CH₃(CH₂)₁₁OSO₃Na, SDS, Sixth Factory Branch, Tianjin, China, \geq 59%), Sodium hydroxide (NaOH, Damao, Tianjin, China, \geq 96%), Potassium hydroxide (KOH, Shuangshuang, Yantai, China, \geq 85%), Hydroxylammonium chloride (NH₂OH·HCl, Kermel, Tianjin, China, \geq 98.5%), Ethanol (CH₃CH₂OH, Rionlon, Tianjin, China, \geq 99.7%), Anhydrous methanol (CH₃OH, Rionlon, Tianjin, China, \geq 99.5%), Polyvinylpyrrolidone (PVP, Kermel, Tianjin, China), Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, Xilong, Shantou, China, \geq 98.5%), 2-Methylimidazole (C₄H₆N₂, Zhanyun, Shanghai, China, \geq 99%), Glucose (C₆H₁₂O₆·H₂O, Kermel, Tianjin, China), Fructose (C₆H₁₂O₆, Kermel, Tianjin, China), Lactose monohydrate (C₁₂H₂₂O₁₁·H₂O, Zhongqin, Shanghai, China), Uric acid (C₅H₄N₄O₃, Sigma, \geq 99%), Potassium hexacyanoferrate (K₃[Fe(CN)₆], Guangfu, Tianjin, China, \geq 99.5%), Potassium hexacyanoferrate trihydrate (K₄[Fe(CN)₆]·3H₂O, Keshi, Chengdu, China, \geq 99.5%) were of analytical grade and used as supplied without further purification. The deionized water (DI-water) was used throughout experiments.

Apparatus

Scanning electron microscopy (SEM) images were acquired through a thermoscientific Apero S microscope. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis were achieved using a Philips Tecnai G2 F30 machine. Powder X-ray diffraction (XRD) was performed on a Rigaku D/max 2400 X-ray diffractometer. X-ray photoelectron spectroscopy (XPS) was carried out on a PHI-5702 instrument.

Electrochemical Measurements

Electrochemical measurements were accomplished on a CHI660d electrochemical workstation (Chenhua, Shanghai, China) using 1.0 M KOH as electrolyte solution. A three-electrode configuration was set up: the working electrode (a glassy carbon electrode, Ø 5.0mm), the reference electrode (a Hg/HgO electrode with 1.0 M KOH), the counter electrode (a graphite rod). The catalyst ink was acquired by adding 5 mg catalyst into 1 mL ethanol under sonication treatment for several minutes. Then 20 µL suspension and 5 µL ethanol solution of Nafion (10% v/v) were dropped onto GCE surface followed by drying under ambient condition.

Preparation of samples

(a) Synthesis of Cu₂O nanocubes

According to a reported literature¹, CuCl₂ solution (5 mL, 0.1 M) and SDS powder (0.87 g) were added into 89.2 mL deionized water in a round-bottom flask, which was put in a water bath (33 $^{\circ}$ C). After SDS powders dissolved, the round bottom flask was moved to ultrasonic water bath followed by introducing NaOH solution (1.8 mL, 1.0 M) drop by drop. Then, NH₂OH·HCl (4 mL, 0.1 M) was rapidly added to the mixture and kept it in the ultrasonic water bath for 60 minutes. The product was obtained by centrifugation and washing with the mixture of ethanol and water (1:1 volume ratio) for two times and only ethanol was used in the third washing step.

(b) Synthesis of Cu₂O@ZIF-67

In a typical procedure¹, 10.0 mg as-prepared Cu₂O nanocubes and 1.0 g PVP were added into 20 mL methanol solution followed by sonicating the mixture for several minutes to get a homogeneous solution (denoted as solution A). Co(NO₃)₂·6H₂O (0.7 g) and PVP (0.25 g) were dissolved in 20 mL methanol (denoted as solution B). 2-methylimidazole (0.26 g) and PVP (0.25 g) were dissolved in 20 mL methanol (denoted as solution B). 2-methylimidazole (0.26 g) and PVP (0.25 g) were dissolved in 20 mL methanol (denoted as solution B) was introduced into solution A drop by drop with stirring. Then solution C was added into the mixture of A and B. The final mixture was kept stirring under ambient condition for 24 hours. The product was collected by centrifugation and washing with methanol for three times followed by dried under vacuum overnight.

(c) Synthesis of ZIF-67

2-methylimidazole (5.5g) and $Co(NO_3)_2 \cdot 6H_2O$ (0.45 g) were dissolved in 20 mL and 3 mL water respectively. Then the two solutions were mixed and the mixture stayed stirring for 6 h followed by washing with ethanol for three times. Finally, the product was obtained after drying at vacuum overnight².

Figure S1. (a, b) TEM images and (c) EDS spectrum of Cu₂O@ZIF-67.

Figure S2. XPS survey scans of Cu₂O, ZIF-67 and Cu₂O@ZIF-67.

Figure S3. Amperometric response of Cu₂O@ZIF-67 at different potentials with successive addition of 2 mM glucose.

Figure S4. Current response time upon glucose addition of (a) Cu₂O@ZIF-67, (b) Cu₂O and (c) ZIF-67.

Figure S5. The CV curves at different scan rates from -0.15V to -0.05 V (vs. Hg/HgO) of (a) $Cu_2O@ZIF-67$, (b) Cu_2O and (c) ZIF-67.

Table S1. Comparison of electrocatalytic performance of Cu₂O@ZIF-67 with other copper and cobalt-based nonenzymatic glucose sensors.

Electrode	Linear range (mM)	Sensitivity (µA cm ⁻² mM ⁻¹)	Limit of detection (µM)	Ref.
Octahedral Cu₂O	0.1-5	293.893	5.11	3
Nano-cubic Cu ₂ O-Ti Cu ₂ O/AlOOH/rGO Nafion/CuO Microspheres	0.017-11.65	28.40 155 1	15.6 2.6	4 5
	2-9	26.59	20.6	6
Cu/Cu ₂ O/CS	0.01–0.69	63.8	5	7
	1.19–3.69	22.6		
MnO ₂ /Co ₃ O ₄	Up to 7	127	0.03	8
ZIF-Air	0.1–0.5	21	25.8	2
ZIF-N ₂	0.1-1.1	227	5.69	2
Co ₃ O ₄ porous film	Up to 3	366.03	1	9
CoOx∙nH₂O-MWCNTs	Up to 4.5	162.8	2.0	10
3D/Co ₃ O ₄	0.001-1	180	0.046	11
Zn doped Co_3O_4	0.005-0.62	193	2	12
Cu ₂ O@ZIF-67	0.01-10	307.02	6.5	This work
	10-16.3	181.34		

References

- 1 B. Li, J.G. Ma and P. Cheng, *Angew. Chem. Int. Ed.*, 2018, **57**, 6834-6837.
- 2 L. Shi, Y. Li, X. Cai, H. Zhao and M. Lan, J. Electroanal. Chem., 2017, **799**, 512-518.
- 3 L. Tang, J. Lv, C. Kong, Z. Yang and J. Li, New J. Chem., 2016, 40, 6573-6576.
- 4 J. L. K. Jayasingha, M. N. Kaumal, K. M. D. C. Jayathilaka, M. S. Gunewardene, D. P. Dissanayake and J. K. D. S. Jayanetti, *Phys. Status Solidi A*, 2017, **214**, 1700135.
- 5 Z. Yang, X. Yan, Z. Li, X. Zheng and J. Zheng, *Anal. Methods*, 2016, **8**, 1527-1531.
- 6 M. Saraf, K. Natarajan and S. M. Mobin, *Dalton Trans.*, 2016, **45**, 5833-5840.
- 7 H. Yin, Z. Cui, L. Wang and Q. Nie, Sens. Actuators B Chem., 2016, 222, 1018-1023.
- 8 L. Sinha, S. Pakhira, P. Bhojane, S. Mali, C. K. Hong and P. M. Shirage, ACS Sustainable Chem. Eng., 2018, 6, 13248-13261.
- 9 S. Fan, M. Zhao, L. Ding, J. Liang, J. Chen, Y. Li and S. Chen, J. Electroanal. Chem., 2016, 775, 52–57.
- 10 J. Yang, W. d. Zhang and S. Gunasekaran, Electrochim. Acta, 2011, 56, 5538–5544
- 11 P. Kannan, T. Maiyalagan, E. Marsili, S. Ghosh, L. Guo, Y. Huang, J.A. Rather, D. Thiruppathi, J. Niedziolka-Jönsson and M. Jönsson-Niedziolka, *Analyst*, 2017, **142**, 4299-4307.
- 12 M. Chowdhury, F. Cummings, M. Kebede and V. Fester, *Electroanalysis*, 2017, 29, 578-586.