Improving Photothermal Therapy Efficacy and Preventing Surface

Oxidization of Bismuth Nanoparticles Through Forming

Bismuth@Bismuth Selenide Heterostructure

Bing Li,^a Yan Cheng,^{*b} Runxiao Zheng,^b Xiaqing Wu,^b Fan Qi,^b Yunyun Wu,^{a, b} Yaqing Hu,^a and Xi Li^{* a}

^aSchool of Chemistry and Life Science, Changchun University of Technology,

Changchun, Jilin 130012, P. R. China

^bLaboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese

Academy of Sciences, Changchun, Jilin 130022, P. R. China

Figure S1. FTIR spectra of Bi and Bi@Bi₂Se₃ NPs with or without oligosaccharides modification.

Figure S2. EDS analysis of Bi@Bi₂Se₃ NPs. Bi, green; Se, red.

Figure S3. Se 3d XPS spectrum of Bi@Bi₂Se₃ NPs.

Figure S4. Hydrodynamic size of DLS of Bi and Bi@Bi₂Se₃ NPs in water and DMEM medium.

Figure S5. The photos of $Bi@Bi_2Se_3$ NPs dispersed in four physiological solutions (from left to right, DMEM, H₂O, PBS and PSF) before (A) and after five days (B).

Figure S6. The DLS of $Bi@Bi_2Se_3$ NPs dispersed in four physiological solutions (H₂O (A), PBS (B), PSF (C) and DMEM (D)) before (blue) and after five days (red).

Figure S7. The Zeta Potential of Bi@Bi₂Se₃ NPs dispersed in four physiological solutions (blue) before and (Red) after five days.

Figure S8. XRD patterns of Bi (A) and Bi@Bi₂Se₃ (B) NPs before and after storing for a month.

Figure S9. DLS of Bi and Bi@Bi₂Se₃ NPs after storing for a month.

Figure S10. The absorption at 808 nm and the corresponding fitting curves of Bi (A) and Bi@Bi₂Se₃ (B) NP-dispersions at different doses.

Figure S11. Heating and cooling curves of Bi and Bi@Bi₂Se₃ NPs.

Figure S12. Plot and linear fit of time versus negative natural logarithm of the temperature increment for the cooling rate of Bi (A) and Bi@Bi₂Se₃ NPs (B) aqueous dispersions.

Figure S13. Temperature elevation curves of Bi (A) and $Bi@Bi_2Se_3$ (B) NPs (25, 50, 100 and 200 µg mL⁻¹) with 808 nm laser irradiation (1 W cm⁻², 10 min).

Figure S14. The NIR photostability of Bi@Bi₂Se₃ NPs. (A) The Heating and cooling curves of Bi@Bi₂Se₃ NPs aqueous dispersions (200 μg mL⁻¹) over 5 irradiation cycles. (B-D) DLS (B), UV-Vis spectra (C) and TEM image (D) results of Bi@Bi₂Se₃ NPs before and after irradiation.