Supporting Information to

Highly sensitive detection of rutin in pharmaceuticals and human serum using ITO electrodes modified with vertically-ordered mesoporous silica-graphene nanocomposite films

Xinyu Ma,^{‡,a} Wenyan Liao,^{‡,b} Huaxu Zhou,^a Yun Tong,^a Fei Yan,^{a,*} Hongliang Tang,^{c,*} and

Jiyang Liu^{a,*}

^a Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310058, PR China

^b Affiliated International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, PR China

^c The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, PR China.

* Corresponding author. E-mail: feifei19881203@126.com; tanghongliang@gxtcmu.edu.cn;

liujy@zstu.edu.cn

[‡] These two authors contributed equally.

Table of Contents

- S1. XPS characterizations of GO/ITO and ErGO/ITO
- S2. EIS characterizations of VMSF/ErGO/ITO
- S3. CVs of rutin at the VMSF/ITO and VMSF/ErGO/ITO
- S4. The effect of scan rate on the CV responses
- S5. Transmittance spectra of bare ITO and VMSF/ErGO/ITO
- S6. Optimized conditions for electrochemical detection
 - S6.1 The concentration of GO
 - S6.2 pH of supporting electrolyte
 - S6.3 Preconcentration time
- S7. Anti-interference study of the VMSF/ErGO/ITO

S1 XPS characterization of GO/ITO and ErGO/ITO

Fig. S1 C 1s XPS profiles of GO/ITO and ErGO/ITO.

S2 EIS characterization of VMSF/ErGO/ITO

Fig. S2 EIS plots of the Bare ITO, SM@VMSF/ErGO/ITO and VMSF/ErGO/ITO electrodes in 0.1 M KHP solution containing 2.5 mM $Fe(CN)_6^{3-/4-}$ at a frequency of 0.1 Hz to 100 kHz..

S3. CVs of rutin at the VMSF/ITO and VMSF/ErGO/ITO

Fig. S3 CVs (a) and DPVs (b) of 30 μ M rutin at the VMSF/ITO and VMSF/ErGO/ITO electrodes in 0.1 M PBS (pH = 3). The scan rate for CVs was 50 mV/s and the insets were the corresponding amplified view of the VMSF/ITO electrode.

S4. The effect of scan rate on the CV responses

Fig. S4 (a) CV curves obtained from VMSF/ErGO/ITO in PBS (0.1 M, pH 3.0) containing 30 μ M rutin at various scan rates. (b) The dependence of anodic and cathodic peak potential on scan rate.

S5. Transmittance spectra of bare ITO and VMSF/ErGO/ITO

Fig. S5 Transmittance spectra of the bare ITO and VMSF/ErGO/ITO. Inset was the photographs of the bare ITO and VMSF/ErGO/ITO electrode. The concentration of GO used here is 0.1 mg/mL.

S6. Optimized conditions for electrochemical detection

S6.1. The concentration of GO

Fig. S6 (a) DPVs of the VMSF/ErGO/ITO electrode prepared by various concentrations of GO in a 0.1 M PBS (pH=3) solution containing 30 μ M rutin. (b) The dependence of anodic peak current on the GO concentration.

Fig. S7 (a) CVs of the VMSF/ErGO/ITO electrode in a 0.1 M PBS solution containing 30 μ M rutin at various pH values. (b) The dependence of cathodic peak potential (E_{pc}) and anodic peak potential (E_{pa}) on the pH value. (c) The dependence of anodic peak current on the pH value.

S6.3 Preconcentration time

Fig. S8 (a) DPVs of the VMSF/ErGO/ITO electrode in a 0.1 M PBS (pH=3) solution containing 30 μ M rutin at different accumulation time. (b)The dependence of anodic peak current on the accumulation time.

S7. Anti-interference study of the VMSF/ErGO/ITO

Fig. S9 DPVs of the VMSF/ErGO/ITO electrode in a 0.1 M PBS (pH=3) solution containing 20 μ M rutin in the absence and presence of 40 μ M DA or/and UA.