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Preparation of diazonium salt

Sulfanilic acid (200 mg) and sodium nitrite (75 mg) were dissolved in 50 mL of 0.25% sodium 

hydroxide solution, and it was slowly added to 50 mL of 0.1N hydrochloric acid. The resulting 

mixture was stirred in ice bath for 2hr and stored in refrigerator for overnight, centrifuged and 

washed with DI water to form GO-SO3H.      

Calculation of photothermal transduction efficiency () according

To calculate the value of hS, a dimensionless driving force of temperature,  is introduced and 

scaled using the maximum system temperature, Tmax and the surrounding temperature, Tsurr.

 =
𝑇 ‒ 𝑇𝑠𝑢𝑟𝑟

𝑇𝑚𝑎𝑥 ‒ 𝑇𝑠𝑢𝑟𝑟
                                                                (2)

and the sample system time constant, s was evaluated using the following equation (3)

𝑡 =‒ 𝑠ln ()                                                                         (3) 

The value of s was calculated by Figs. S10 and S11, and using its value, the unknown 

parameter, hS was evaluated with the help of following equation (4).

ℎ𝑆 =
𝑚𝐷𝐶𝐷

𝑠
                                                                             (4)

where mD is mass of DI water (1.01g) and CD is its heat capacity.  The value of Qdis was 

measured separately using quartz cuvette containing only DI water without any sample and it 

was found to be 25.9 mW.
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Fig. S1. ATR-FTIR spectrum of NGO-FA in specified region.
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Fig. S2.  EDS of NGO-FA-CuS.



Table S1. Photothermal efficiency () value reported for popular CuS and Au contained 

photothermal agents. 

Sample

Reported value of 

photothermal efficiency

(%)

Reference

NGO-FA-CuS 46.2 This work

CuS nanoflowers 38.4 This work

CuSCs-PEG-FA 27.4 S1

Cys-CuS NPs 27.4 S2

HCuS@Cu2S@Au 35.0 S3

CuS nanodiamonds 36.4 S4

Au nanoshells 18.0 S5

Au nanorods 22.0 S6

Cu2-xSe nanoparticles 22.0 S7

Au nanoshells 25.0 S8

Cu9S5 nanoparticles 25.7 S9

Au vesicle 18.0 S10
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Fig. S3. Temperature variation measured for the aqueous dispersion of NGO-FA-CuS (1 mg/mL) 
for five cycles under illumination by a 980 nm laser.
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Fig. S4. XRD patterns of NGO-FA-CuS before and after applying in five successive cycles of 
photothermal effect.
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Fig. S5. Photothermal effect of NGO-FA-CuS measured at different concentrations under 
illumination to 980 nm laser.
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Fig. S6. Photothermal effect of NGO-FA-CuS measured at 1 and 2 W/cm2 under illumination to 
980 nm laser.
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Fig. S7. Photothermal effect of NGO-FA-CuS measured under illumination to 808 and 980 nm 
laser.
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Fig. S8. Cytotoxicity of NGO-FA-CuS measured for HeLa cells at concentration of 200 µg/mL.
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Fig. S9. Cytotoxicity of NGO-FA-CuS over KB cells at different incubation time.
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Fig. S10. Temperature variation found for aqueous dispersion of Cus and NGO-FA-CuS under 
exposure to 980 nm laser followed by its shut off.
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Fig. S11. The plot of time from cooling period versus negative natural logarithm of driving force 
temperature obtained for Cus and NGO-FA-CuS using the data shown in Fig. S10.
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