Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting Information

A pH/Redox-Dual Responsive, Nanoemulsion-Embedded Hydrogel for Efficient Oral Delivery and Controlled Intestinal Release of Magnesium Ions

Yu Huang^a,[†], Zewei Wang^a,[†], Guiju Zhang^a,^b, Jie Ren^a, Li Yu^a, Xuhan Liu^a, Yuanxi Yang^a, Abirami Ravindran,^a Chloe Wong,^a and Rongjun Chen^a.*

^a Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

^b School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P. R. China

* Corresponding author: Dr Rongjun Chen.
Tel: +44 (0)20 75942070
Fax: +44 (0)20 75945638
E-mail: rongjun.chen@imperial.ac.uk

[†] These authors contributed equally to this work.

Hydrogel	PLP	CDE	EDC	NHS	PLP concentration
	(mg)	(mg)	(mg)	(mg)	(wt%)
Gel1	50	13	70	10	5
Gel2	75	19	104	17	7
Gel3	100	26	140	20	9
Gel4	150	38	208	34	13
Gel5	200	50	278	42	17

Table S1. The formulae of hydrogels with different polymer concentrations.

Figure S1. The synthesis route of poly(_L-lysine isophthalamide) (PLP).

Figure S2. ¹H NMR spectrum of PLP (400 MHz, in DMSO- d_6 , 298 K). The ¹H-NMR spectrum of its acid form in DMSO- d_6 consisted of various peaks as follows: δ (ppm) 1.28-1.64 (b: -CH₂- and c: -CH₂-), 1.76-1.97 (d: -CH₂-), 3.12-3.34 (a: -CH₂-), 4.25-4.43 (e: -CH-), 7.37-7.65 (h: complex multiplet aromatic -C-H); 7.85-8.17 (g and i: complex multiplet aromatic -C-H), 8.23-8.45 (f: complex multiplet aromatic -C-H), 8.53-8.96 (complex series of peaks amide -NH-).

Figure S3. Typical FTIR spectra of the hydrogel Gel3 and the magnesium-carrying

nanoemulsion-embedded hydrogel Gel3 (294.7 \pm 4.8 mg of loaded magnesium).

Figure S4. Typical DSC spectra of the lyophilized Gel3 and the lyophilized composite hydrogel Gel3 embedded with magnesium-carrying nanoemulsions $(294.7 \pm 4.8 \text{ mg of loaded magnesium})$.

Figure S5. Swelling ratios q of different hydrogels with the PLP concentration at 5 wt% (Gel1), 7 wt% (Gel2), 9 wt% (Gel3), 13 wt% (Gel4) and 17 wt% (Gel5) after treatment with SGF (pH 1.2), SIF (pH 6.8) and SIF (pH 6.8) + 125 mM of DTT for 1 h, respectively.

Figure S6. The differences in swelling ratio (Δq) of different hydrogels between treatments in SGF (pH 1.2) and SIF (pH 6.8) + 125 mM of DTT for 1 h.

Figure S7. DLS size of blank nanoemulsions and magnesium-carrying nanoemulsions

 $(294.7 \pm 4.8 \text{ mg of loaded magnesium})$ in pH 7.4 PBS buffer.

Figure S8. Swelling ratios q of the magnesium-loaded composite hydrogels after treatment of SGF (pH 1.2), SIF (pH 6.8) and SIF (pH 6.8) + 125 mM of DTT buffer for 1 h, respectively.

Figure S9. (A) Typical DLS size distribution and (B) PDI of the magnesium-carrying nanoemulsions post release from the composite hydrogels treated in SGF (pH 1.2), SIF (pH 6.8) and SIF (pH 6.8) + 125 mM of DTT, respectively for 6 h.