Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information**

## A multiple emission bands NIR persistent luminescence

## nanoparticles mSiO<sub>2</sub>@Zn<sub>0.6</sub>Ca<sub>0.4</sub>Ga<sub>2</sub>O<sub>4</sub>: Cr<sup>3+</sup>, Yb<sup>3+</sup> for biological

## applications



**Figure S1** (a) TEM image of mSiO<sub>2</sub>@ZGO nanocrystals. (b) HRTEM image of mSiO<sub>2</sub>@ZGO nanocrystals. (c) High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image and (d–g) HAADF-STEM-EDS mapping images of mSiO<sub>2</sub>@ZGO nanocrystals.



**Figure S2** Size distribution of the as-synthesized (a) mSiO<sub>2</sub>, (b) mSiO<sub>2</sub>@ZGO and (c) mSiO<sub>2</sub>@ZCGO nanocrystals, which was obtained by calculating 100 particles in the TEM images.



Figure S3 (a)  $N_2$  adsorption/desorption isotherms and (b) pore size distributions of mSiO<sub>2</sub> and mSiO<sub>2</sub>@ZCGO nanocrystals, respectively.



**Figure S4** (a) Photoluminescence (PL) spectra measured by excitation at 410 nm for  $mSiO_2@ZGO$  and  $mSiO_2@ZCGO$  nanocrystals, respectively. (b) PL spectra measured by excitation at 915 nm for  $mSiO_2@ZGO$  and  $mSiO_2@ZCGO$  nanocrystals, respectively. Persistent luminescence decay curves measured by monitoring the emissions at (c) 696 nm and (d) 977 nm of  $mSiO_2@ZGO$  and  $mSiO_2@ZCGO$  nanocrystals after being illuminated with a 254-nm UV lamp for 1 min and 10 min, respectively.



**Figure S5** Persistent luminescence decay curves measured by monitoring the emission at 696 nm of  $mSiO_2@ZCGO$  nanocrystals with various contents of  $Cr^{3+}$  ions (0.07 - 0.7 % mol) after being illuminated with a 254-nm UV lamp for 1 min.



**Figure S6** Yb<sup>3+</sup> ions persistent luminescence images of mSiO<sub>2</sub>@ZCGO nanocrystals recorded at different delayed time by an InGaAs camera after the sample has been illuminated with a 254-nm UV lamp for 10 min. The exposure time of the InGaAs camera is 1s.