Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting information

Complying the Physiological Functions of Golgi Apparatus for Secretory Exocytosis

Facilitated Oral Absorption of Protein Drugs

Liyun Xing, Yaxian Zheng, Yinglan Yu, Ruinan Wu, Xi Liu, Rui Zhou* and Yuan Huang*

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

Supplementary information includes:

Supplementary methods.

Supplementary SchemeS1. Synthetic routes of DSPE-PEG-Cys and DSPE-PEG-R8.

Supplementary Figures:

- Fig. S1 ¹H-NMR spectra of DSPE-PEG-Cys and DSPE-PEG-R8.
- Fig. S2 Effect of NPs on viability of Caco-2 cells.
- Fig. S3 TEER values before and after treatment of NPs.
- Fig. S4 Synthetic route and ¹H-NMR spectra of DSPE-PEG-Ala.
- Fig. S5 Effect of L-cysteine and L-alanine on viability of Caco-2 cells.
- Fig. S6 Colloidal stability of NPs.
- Fig. S7 Hemolysis assay of NPs.
- Fig. S8 Enzymatic stability of insulin.

Supplementary Tables:

- Table S1 Characterization of Ala NPs.
- Table S1 Characterization of insulin-loaded NPs.

Supplementary methods

In vitro cytotoxicity study

The cytotoxicity of NPs and chemicals on Caco-2 cells was investigated by the Alamar Blue method. Caco-2 cells were seeded in 96-well plates at 1×10^4 cells/well and cultured for 36 h. Different concentrations of NPs (100-400 µg/mL of PLGA) or tested chemicals was added respectively. After incubated for 3 h, the NPs and chemicals were removed. The cells were washed by PBS and incubated with Alamar Blue solution (10 µg/mL) for another 1 h. The fluorescence intensity was measured by multimode reader.

Colloidal stability study

To investigate the colloidal stability of NPs in mimic gastrointestinal environment, NPs were suspended in simulated gastric fluids (SGF, with 0.32% (w/v) pepsin) and simulated intestinal fluids (SIF, with 1% (w/v) trypsin) at 37°C with gentle shaking. At predetermined time intervals, the particle size of NPs was measured by Malvern Zetasizer NanoZS90 analyzer (Malvern Instruments Ltd, UK).

Enzymatic stability of insulin

To evaluate the protection of NPs on insulin, the enzymatic stability of insulin was investigated. INS PEG NPs, INS 25%R8+75%Cys NPs and free insulin solution were incubated in SIF (with trypsin, 40 μ g/mL), making the final concentration of insulin at 200 μ g/mL. 100 μ L of samples was withdrawn at each time point (0, 1, 2, 4 h) and mixed with 100 μ L DMSO containing 2% trifluoroacetic acid to terminate the enzymatic interaction. Finally, the amount of insulin was tested by high performance liquid chromatography (HPLC).

Statistical Analyses

Student's t-test or one-way analysis of variance (ANOVA) was used for statistical analyses. All data were presented as the mean \pm SD. Experiments were performed in triplicate if not specified. Differences at P values < 0.05 were considered to be statistically significant.

Scheme S1 Synthetic routes of (A) DSPE-PEG-Cys and (B) DSPE-PEG-R8.

Fig. S1¹H-NMR spectra of (A) DSPE-PEG-NHS, (B) DSPE-PEG-Cys, (C) DSPE-PEG-Mal and (D) DSPE-PEG-R8.

Fig. S2 Caco-2 cells viability after treatment with various concentrations of NPs in different concentrations via Alamar Blue method (n = 3).

Fig. S3 TEER values of Caco-2 cell monolayers before and after NPs incubation (n=3).

Fig. S4 Synthesis of DSPE-PEG-Ala and ¹H-NMR spectra of DSPE-PEG-Ala.

Fig. S5 Caco-2 cells viability after treatment with various concentrations of L-cysteine and Lalanine in different concentrations via Alamar Blue method (n = 3).

Fig. S6 Colloidal stability of NPs in SGF and SIF (n = 3).

Fig. S7 Hemolysis rate of NPs after incubated with erythrocyte for 2 h (n = 3).

Fig. S8 The percentage of remained insulin in SIF with trypsin (n = 3). *p<0.01, #P<0.01 vs INS 25%R8+75%Cys NPs, &P<0.01 vs INS PEG NPs.

Table S1	Characterization	of Ala NPs.

Sample	Size (nm)	PDI	Zeta potential (mV)
Ala NPs	89.0±3.7	0.225±0.053	-26.76±0.76

 Table S2 Characterization of insulin-loaded NPs.

Sample	Size (nm)	PDI	Zeta	EE%	DL%
			potential		
			(mV)		
PEG NPs	86.2±7.9	0.287±0.005	-26.03±1.80	69.12±6.51	11.53±1.27
25%R8+75%Cys	103.5±5.2	0.229±0.043	-19.93±0.45	74.44±10.61	11.38±2.34
NPs					